NICaN Acute Oncology Clinical Guidelines

December 2015
This guidance has been produced to support the diagnosis and treatment of acute oncological complications. Treatment decisions for individual patients require the weighing of a multiplicity of factors, which cannot all be accounted for in a clinical guideline. The Clinical Guidelines provide a description of the range of treatment options available for a clinical scenario.

Authors
Dr Judith Carser Consultant Medical Oncologist SHSCT
Dr Paula Scullin Consultant Medical Oncologist BHSCT
Dr Ruth Johnston Consultant Clinical Oncologist BHSCT
Dr Caroline Forde Medical Oncology Registrar BHSCT

Review and Consultation
Ms Eileen Deery, Chair NICaN Lead Nurses
Dr Jayne McAuley, Palliative Care Consultant NHSCT
Dr Kiran Kaur Consultant in Palliative Medicine BHSCT
HSCB Acute Oncology Steering Group
NICaN Clinical Reference Groups and AHP Group

Version Control

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>First version</td>
</tr>
<tr>
<td>1.1</td>
<td>Malignant pleural effusion section amended</td>
</tr>
<tr>
<td>1.2</td>
<td>Addition of diarrhoea, mucositis sections</td>
</tr>
<tr>
<td>1.3</td>
<td>Formatting, addition of abbreviations and references</td>
</tr>
<tr>
<td>1.4</td>
<td>Formatting of references</td>
</tr>
<tr>
<td>1.5</td>
<td>Corrections</td>
</tr>
<tr>
<td>1.6</td>
<td>Addition of comments from consultation</td>
</tr>
<tr>
<td>1.7</td>
<td>Corrections and addition of key contacts</td>
</tr>
<tr>
<td>1.8</td>
<td>Addition of references</td>
</tr>
<tr>
<td>1.9</td>
<td>Addition of acknowledgements and corrections</td>
</tr>
</tbody>
</table>
Contents

Acknowledgements 4
Abbreviations 5
Introduction 7
Network Configuration of Services 8
Referral Guidelines 9
Contact Directory 10
Ascites 12
Brain Metastases 15
Central Venous Access Device Complications 18
Diarrhoea 21
Chemotherapy Extravasation 28
Hypercalcaemia of Malignancy 34
Hypomagnesaemia 38
Hyponatremia 41
Lymphangitis Carcinomatosis 45
Malignant Bowel Obstruction 47
Malignant Pericardial Effusion 51
Malignant Pleural Effusion 53
Metastatic Spinal Cord Compression 55
Treatment Related Nausea and Vomiting 62
Neutropenic Sepsis 67
Mucositis 72
Radiotherapy 75
Radiation Associated Neurotoxicity 77
Radiation Pneumonitis 80
Radiation Skin Reactions 83
Systemic anti-cancer therapy 86
SACT Skin Toxicity 88
SACT Hypersensitivity 90
Steroid Induced Hyperglycaemia 93
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior Vena Cava Obstruction</td>
<td>95</td>
</tr>
<tr>
<td>Venous Thromboembolism</td>
<td>98</td>
</tr>
<tr>
<td>References</td>
<td>101</td>
</tr>
</tbody>
</table>
Acknowledgements

The HSCB Acute Oncology Steering Group would like to thank the authors of these guidelines, Dr Paula Scullin, Dr Judith Carse and Dr Ruth Johnston, consultant oncologists, Northern Ireland Cancer Centre. Thank you to everyone who has provided input into the production of the NICaN Acute Oncology Clinical Guidelines, as well as those who shared documents, including local guidance from hospital Trusts and NICaN, to inform the guideline development. A special thanks to Dr Caroline Forde, oncology specialist registrar, for her commitment and enthusiasm in coordinating, drafting and editing these guidelines. I also wish to acknowledge members of the Acute Oncology Steering Group and the NICaN Clinical Reference Groups who spent considerable time reviewing and endorsing the guidelines.

These guidelines are the first regional acute oncology guidelines in Northern Ireland and will give a consistent and equitable approach to patient care. The guidance has been developed to assist healthcare professionals in the care of cancer patients whose patients with acute oncology symptoms following treatment for their cancer or as a direct result of the disease itself.

The guidelines are not intended to be exhaustive and should be used in conjunction with clinical judgement. They will be available on all Trust intranets, the NICaN website and available to download for free on android and apple devices through the Horizon Microguide app.

The preparation of these guidelines was facilitated by the generous funding received from Macmillan Cancer Support.

Dr Miriam McCarthy
Consultant Public Health, PHA
Chair HSCB Acute Oncology Steering Group
Abbreviations

Blood tests
- ANC: Absolute neutrophil count
- cCa: Corrected Calcium
- Coag: Coagulation Screen
- CRP: C reactive protein
- FBP: Full blood picture
- K: Potassium
- U&E: Urea and electrolytes
- LFT: Liver function tests
- Mg: Magnesium
- PTH: Parathyroid hormone

Medication related
- OD: Once daily
- BD: Twice daily
- TID: Three times daily
- QID: Four times daily
- IV: Intravenous
- PO: Orally
- Prn: When required
- SC: Subcutaneous

Other
- CBG: Capillary blood glucose
- CSCI: Continuous subcutaneous infusion
- CVAD: Central Venous Access Device
- DVA: Driver and Vehicle Agency
- GCSF: Granulocyte Colony Stimulating Factor
- LMWH: Low molecular weight heparin
- MSCC: Metastatic Spinal Cord Compression
- NSAIDs: Non-steroidal anti-inflammatory drugs
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>Neutropenic Sepsis</td>
</tr>
<tr>
<td>PICCs</td>
<td>Peripherally Inserted Central Catheters</td>
</tr>
<tr>
<td>PPI</td>
<td>Proton Pump Inhibitor</td>
</tr>
<tr>
<td>SACT</td>
<td>Systemic Anti-Cancer Therapy</td>
</tr>
<tr>
<td>SPCT</td>
<td>Specialist Palliative Care Team</td>
</tr>
<tr>
<td>SVCO</td>
<td>Superior Vena Cava Obstruction</td>
</tr>
<tr>
<td>TPN</td>
<td>Total Parenteral Nutrition</td>
</tr>
<tr>
<td>VTE</td>
<td>Venous Thromboembolism</td>
</tr>
</tbody>
</table>
Introduction

The introduction of Acute Oncology Services in Northern Ireland follows recommendations by the National Chemotherapy Advisory Group, guided by reports from National Confidential Enquiry into Patient Outcome and Death (NCEPOD) and the National Patient Safety Agency requiring a more systematic approach to acute care for patients with cancer. The structure and function of the service is described in the Manual for Cancer Services and Acute Oncology is subject to the National Cancer Peer Review programme. Acute Oncology Services (AOS) provide a single point of hospital contact for advice/support and bring together expertise from many disciplines including oncology, palliative care, haematology, acute and emergency medicine and surgery, radiology, microbiology and pathology amongst others.

In Northern Ireland, patients with acute cancer-related complications may present in a number of ways and to different healthcare settings. Whilst some patients are treated in the Cancer Centre, others may present to any acute trust throughout Northern Ireland, including but not limited to the Cancer Units at Craigavon Area Hospital, Antrim Area Hospital, Ulster Hospital and Altnagelvin Area Hospital as well to other acute hospitals within Belfast Trust. These guidelines reflect the best evidence based practice and provide advice regarding the initial support for patients requiring acute cancer-related care, whether that is due to the cancer itself or the treatment for it. The guidelines are not exhaustive and allow for local flexibility where good practice already exists.

The Acute Oncology Clinical Guidelines are intended to be used by all members of the healthcare team as a regional document to provide standardisation to guide best practice. They are not a substitute for specialist oncology input and patients should be referred to the AOS or local oncology teams for ongoing advice and management. These guidelines are designed to be used in conjunction with existing local protocols e.g. antibiotic guidelines.

Many patients referred to the AOS will have advanced disease or other symptom control requirements and early referral to the hospital and community specialist palliative care teams is encouraged.
Network Configuration of Services

The Northern Ireland Cancer Centre on the Belfast City Hospital site currently provides all radiotherapy services, as well as complex systemic therapy for rarer cancers or those requiring inpatient treatment. The Belfast City Hospital also acts as the local cancer unit for the greater Belfast area, Bridgewater Suite Day Hospital on Level C in Tower provides day case chemotherapy for all cancers.

Each of the remaining Trust areas has a designated cancer unit providing day case systemic therapy and outpatient services for the more common cancers such as colorectal, breast, prostate and lung cancers. Craigavon Area Hospital (Southern Trust), Antrim Area Hospital (Northern Trust), Ulster Hospital (South Eastern Trust) and Altnagelvin Hospital (Western Trust) are currently supported by a mix of resident and visiting oncologists as well as at least 1.5 WTE acute oncology Clinical Nurse Specialists. Whilst it is recognised that cancer patients may present to any acute Trust within Northern Ireland, acute oncology services will initially be based in Craigavon, Antrim, Altnagelvin, Ulster and Royal Victoria Hospitals. It is anticipated that each local AOS will provide liaison services to all acute hospitals within each Trust area, however there will be no designated acute oncology beds.

The role and scope of the AOS in each trust will differ depending upon the local provision of oncology services and each AOS will integrate, develop and lead on acute oncology pathways that already exist within each trust with liaison to the regional Cancer Centre where necessary. The AOS will act as a single focal point for advice and support for all acute admissions which fulfil the referral criteria. The AOS is a liaison service and does not provide acute inpatient beds beyond the cancer centre at this time, although the service configuration will undergo further development with the future opening of the new cancer treatment centre in Altnagelvin.

Urgent out-of-hours advice may be sought from the registrar or consultant on call via the Northern Ireland Cancer Centre.
Referral Guidelines

Patients should be referred to the local Acute Oncology Service meeting any of the following criteria and can be referred by any member of the healthcare team. Patients should be referred as early as possible and usually within 24 hours of admission:

1. Patients who are receiving or who received any anti-cancer therapy (including radiotherapy or systemic therapy) within the last 6 weeks and who are admitted with potential complications from treatment

2. Patients with complications from a previously diagnosed cancer whether they have received recent treatment or not.

3. Patients with a previously undiagnosed cancer who are found to have a confirmed or suspected malignancy for which there is no obvious primary site after a preliminary set of investigations

<table>
<thead>
<tr>
<th>Systemic anti-cancer therapy complications</th>
<th>Radiotherapy complications</th>
<th>Disease-related complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenic sepsis</td>
<td>Acute skin reactions</td>
<td>Brain metastases</td>
</tr>
<tr>
<td>Uncontrolled nausea and vomiting</td>
<td>Uncontrolled nausea and vomiting</td>
<td>Malignant spinal cord compression</td>
</tr>
<tr>
<td>Uncontrolled diarrhoea</td>
<td>Uncontrolled diarrhoea</td>
<td>Ascites</td>
</tr>
<tr>
<td>Uncontrolled mucositis</td>
<td>Uncontrolled mucositis</td>
<td>Pleural or pericardial effusions</td>
</tr>
<tr>
<td>Acute hypersensitivity reactions</td>
<td>Acute radiation pneumonitis</td>
<td>Hypercalcaemia of malignancy</td>
</tr>
<tr>
<td>CVAD complications</td>
<td>Acute radiation neurotoxicity</td>
<td>Hyponatraemia</td>
</tr>
<tr>
<td>Extravasation injuries</td>
<td></td>
<td>Lymphangitis carcinomatosis</td>
</tr>
<tr>
<td>Electrolyte disturbances</td>
<td></td>
<td>Malignant bowel obstruction</td>
</tr>
<tr>
<td>e.g. hypomagnesaemia</td>
<td></td>
<td>Superior vena cava obstruction</td>
</tr>
<tr>
<td>Uncontrolled skin toxicity</td>
<td></td>
<td>Venous thromboembolism</td>
</tr>
</tbody>
</table>
Contact Directory
Patients are encouraged to contact the chemotherapy helpline for the unit where they are receiving treatment. They should contact the helpline if they are within 6 weeks of receiving chemotherapy or 12 weeks of receiving immunotherapy.

There is an on-call oncology registrar based in the cancer centre available 24/7 through the BCH switchboard for urgent enquiries.

For non-emergency enquiries it is best to contact the hospital specific acute oncology team or clinical team through the consultant’s secretary. Secretaries are based in the cancer centre and contactable through the Belfast Trust switchboard.
<table>
<thead>
<tr>
<th>Belfast Trust</th>
<th>24 hour Chemotherapy helpline telephone advice service for patients</th>
<th>Oncology patients: 02890 263805 Haematology patients: 02890 263984</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oncology registrar on call for urgent enquiries</td>
<td>Available through BCH switchboard 07788283794</td>
</tr>
<tr>
<td></td>
<td>Belfast City Hospital Switchboard</td>
<td>028 90329241</td>
</tr>
<tr>
<td></td>
<td>RVH ED reception</td>
<td>028 90632250</td>
</tr>
<tr>
<td></td>
<td>Mater Hospital ED reception</td>
<td>Available through main switchboard 028 90741211</td>
</tr>
<tr>
<td></td>
<td>Bridgewater chemotherapy unit reception</td>
<td>028 95040930</td>
</tr>
<tr>
<td></td>
<td>Northern Ireland Clinical trials unit reception</td>
<td>02890 638468</td>
</tr>
<tr>
<td>Northern Trust</td>
<td>24 hour Chemotherapy helpline telephone advice service for patients</td>
<td>028 94424201 (8.30am - 5pm) 028 94424473 (out of hours including bank holidays, AMU1, Acute Medical Unit/B1 Antrim Area Hospital)</td>
</tr>
<tr>
<td></td>
<td>Laurel House chemotherapy unit reception</td>
<td>028 94424201 (8.30am- 5pm)</td>
</tr>
<tr>
<td></td>
<td>Antrim ED reception</td>
<td>028 94426262</td>
</tr>
<tr>
<td>Southern Trust</td>
<td>24 hour Chemotherapy helpline telephone advice service for patients</td>
<td>028 38612821 (8.30am - 5pm) 028 38612509 (out of hours including bank holidays, 2North Haematology)</td>
</tr>
<tr>
<td></td>
<td>Mandeville chemotherapy unit reception</td>
<td>02838612822</td>
</tr>
<tr>
<td></td>
<td>Craigavon ED reception</td>
<td>02838612980</td>
</tr>
<tr>
<td></td>
<td>Acute oncology nurse</td>
<td>02838334444 bleep 1782</td>
</tr>
<tr>
<td>South Eastern Trust</td>
<td>24 hour Chemotherapy helpline telephone advice service for patients</td>
<td>07713082649</td>
</tr>
<tr>
<td></td>
<td>MacDermott chemotherapy unit reception</td>
<td>028 90561437</td>
</tr>
<tr>
<td></td>
<td>Ulster Hospital ED reception</td>
<td>028 90564875</td>
</tr>
<tr>
<td>Western Trust</td>
<td>24 hour Chemotherapy helpline telephone advice service for patients</td>
<td>02871 611289</td>
</tr>
<tr>
<td></td>
<td>Sperrin chemotherapy unit reception</td>
<td>02871 611320</td>
</tr>
</tbody>
</table>
Ascites

ASCITES

- Associated with a wide variety of cancers, most commonly ovarian and gastrointestinal.
- Often the presenting feature of a new cancer diagnosis.

Symptoms and signs

Symptoms: Pain, anorexia, early satiety, indigestion, nausea and vomiting, altered bowel motility, dyspnoea and reduced mobility.

Signs: Abdominal distension, shifting dullness and fluid thrill.

Investigations

<table>
<thead>
<tr>
<th>Cytology</th>
<th>If new cancer presentation a good volume of ascitic fluid should be sent for cytology.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT chest, abdomen, pelvis</td>
<td>If appropriate also consider CT imaging. Then liaise with relevant specialist multidisciplinary meeting depending on likely tumour site.</td>
</tr>
</tbody>
</table>

Initial Management

Refer to local Acute Oncology

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

Paracentesis (either single aspiration or Bonano catheter) will provide immediate relief from symptomatic ascites.

Indications – Tense ascites or moderate/severe symptoms and patient fit enough.

Contraindications – severe and irreversible coagulation disorders, intestinal obstruction and abdominal sepsis.

In patients with advanced cancer cachexia, particularly if there is liver failure
(significant hypoalbuminaemia of <25g/L), paracentesis may precipitate a rapid deterioration in their clinical condition and risk should be weighed carefully against possible symptomatic benefit.

Risks – Visceral injury, peritonitis, bleeding, hypotension and protein loss leading to metabolic disturbances.

Pre Procedure – Bloods - U&E. FBP and coagulation screen checked in at risk patients (recent chemotherapy/advanced liver disease/anticoagulated). Platelets should be >50 x10^9/L and INR <1.4. Consider delaying procedure if neutropenic. Routine anticoagulation is normally stopped 24-48hrs pre procedure. Ultrasound evaluation and marking of suitable site for drainage essential. Written informed consent should be obtained and a set of observations (NEWs) checked pre procedure.

Rate of drainage – Usually no more than 6000ml should be drained at one time. Drainage should be tailored to clinical situation. Normally left on free drainage so long as patient remains well and blood pressure maintained. It is not necessary to clamp drains to control drainage rate. If patient becomes haemodynamically unstable then clamp until blood pressure recovers. In patients with advanced cachexia or liver failure removing large volumes of fluid can lead to a rapid deterioration and drainage should be more controlled.

Intravenous fluids not normally required but consider 0.9% normal saline if the patient is dehydrated, has renal impairment, symptomatic during paracentesis, portal hypertension secondary to massive liver metastases or hepatocellular carcinoma +/- cirrhosis.

No proven role for albumin in malignant ascites. May be considered if portal hypertension +/- cirrhosis in the setting of large volume paracentesis (>5L/24hrs). 6-8g of albumin/litre of ascitic fluid drained.

Most patients have drain removed within 24 hours. Symptomatic benefit is most
marked after first few litres removed. Drains left in indefinitely continue to drain as ascites reaccumulates.

If symptomatic benefit, arrange repeat paracentesis as required.

Consideration should be given to a long term PleurX peritoneal catheter. This is often an attractive option for patients not receiving anti-cancer treatment. Normally discussed with patients oncologist taking into consideration prognosis and planned anti-cancer treatment.

Subsequent Management Options

1. **Systemic Anti-Cancer Treatment** is useful if underlying malignancy likely to respond and the patient fit enough for treatment.

2. **Diuretics** may be effective in some patients especially if massive liver metastases causing portal hypertension (serum/albumin gradient >11g/L). U&E and electrolytes need checked at baseline and monitored.
 - Spironolactone (e.g. starting 100-200mg/day, increased by 100mg every 3-7 days, normal maintenance dose 300mg/day).
 - If no response after 2 weeks and renal function satisfactory, consider addition of furosemide (starting 40mg/day). Response may take up to 4 weeks to be evident. Discontinue if not tolerated or not benefiting.

3. **Peritoneovenous shunts** are rarely used as high complication rate often outweighs benefits.

Prognosis

Ascites is indicative of disseminated disease and generally associated with a poor prognosis. However optimally treated Stage III ovarian cancer presenting with ascites can result for example in a 30-40% 5 year survival. It is therefore important patients are assessed for suitability for investigation and treatment.
Brain Metastases

BRAIN METASTASES

- These account for the vast majority of all intracranial tumours.
- The most common tumour types to metastasise are lung, breast, cancer of unknown primary, melanoma and colon.

Symptoms and signs

Symptoms can vary depending on the level and rate of change in pressure caused by the metastases.

Classical features include:

- Headache (worse on waking and exacerbated by a change in posture, sneezing, coughing or straining).
- Nausea and vomiting
- Confusion / changing mood or personality
- Focal neurological deficit
- Impaired consciousness
- Seizures

Investigations

<table>
<thead>
<tr>
<th>Bloods</th>
<th>FBP, Coagulation, blood culture (if infection suspected).</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT brain</td>
<td>Good for demonstration of acute haemorrhage, oedema, mass effect and hydrocephalus</td>
</tr>
<tr>
<td>CT after intravenous contrast</td>
<td>Will detect most metastases.</td>
</tr>
<tr>
<td>MRI brain</td>
<td>May demonstrate metastases not visualised on CT, particularly in the posterior fossa. Also useful for further characterisation of suspected abnormalities seen on CT: discuss with local Radiologist</td>
</tr>
<tr>
<td>CT chest/abdomen</td>
<td>If first presentation of cancer to look for primary site and extent of extracranial disease.</td>
</tr>
<tr>
<td>Stereotactic biopsy</td>
<td>Discuss with neurosurgery – may be considered in new cancer presentation with no systemic disease to biopsy.</td>
</tr>
</tbody>
</table>
Initial Management

Refer to Local Acute Oncology Team

1. Corticosteroids to improve neurological symptoms.

Dexamethasone 8mg BD IV/PO (am and lunchtime) with PPI cover if significant symptoms or mass effect.
Lower doses may be sufficient if only mild symptoms (e.g. 2-4mg BD). Steroids are not required in asymptomatic patients.
Oral dexamethasone preferred unless highly symptomatic/unable to swallow.
Dexamethasone can be slowly tapered down to lowest dose required to control symptoms. If patient is for radiotherapy steroids should start to be reduced after completing radiotherapy, which may initially worsen oedema.
If evidence of hydrocephalus senior discussion with neurosurgery if felt appropriate for consideration of surgical intervention or use of mannitol.

2. Supportive measures with analgesia and antiemetics.

3. Commence anti-convulsants if seizures.

Acute treatment of seizures as per standard practice.
Prophylactic use of anti-convulsants in the absence of seizures is not indicated.
Long term regular anti-convulsants are recommended after the first seizure in patients with a space occupying lesion.
Discuss with neurology team about best choice of agent. Keppra (Levetiracetam) is commonly prescribed as a first line agent.

4. Studies demonstrate anticoagulation (LMWH) can be used safely in patients with brain metastases for venous thromboembolism prophylaxis and treatment. Even in patients with melanoma with haemorrhagic brain metastases, anticoagulation has not been shown to significantly increase the risk of intracranial haemorrhage.

5. Advise the patient they must not drive and should inform the DVA.

6. Consider referral to Physiotherapy and OT as patients may present with cognitive or functional changes which may impact on safety.
Subsequent Management

Options depend on number, size and location of brain metastases, performance status, co-morbidities, whether systemic disease is controlled and an assessment of prognosis.

Solitary or a small number of brain metastases may be considered for surgical excision or stereotactic radiotherapy. These cases will be discussed at the neurosurgical MDM.

Whole brain radiotherapy may be indicated for multiple brain metastases from a known primary in patients well enough to receive treatment. It may offer temporary tumour control, modest improvement in survival and allow a reduction in steroids without deterioration in symptoms. Careful consideration is required however as to whether radiotherapy will benefit the patient and referral to palliative care should also be considered.

Some SACT agents can be effective against brain metastases and may be an early choice, especially in patients with sensitive primary tumours.

Reference

Central Venous Access Device Complications

CENTRAL VENOUS ACCESS DEVICE (CVAD) COMPLICATIONS

- Indwelling CVADs are commonly used in oncology patients.
- They provide reliable venous access for patients requiring a wide range of therapies including chemotherapy, phlebotomy, blood product transfusions and other supportive measures.

The most commonly used CVADs are:
- Peripherally Inserted Central Catheters (PICCs)
- Tunnelled Catheters (‘Hickman lines’)
- Implantable Ports (‘Portacaths’)

The ideal tip position for CVADs is the **lower third of the superior vena cava or near its junction with the right atrium**.

There may be exceptional circumstances depending on the patient’s condition and venous access where a migrated PICC may be acceptable to the treating Consultant but it must be documented in writing.

If in doubt discuss with a radiologist/infusional services.

If a catheter migrates internally or externally by 2cm or more, reassess catheter tip position by PA chest x-ray.

If catheter malpositioned it should be discussed immediately with infusional services/interventional radiology. Catheter removal and replacement may be avoidable.

Management

Refer to local Acute Oncology Service or infusional services for advice.

Infection

- Exit site infections usually respond to oral antibiotics alone, tunnel infections require treatment with parenteral antibiotics. For suspected exit site infections (erythema, pain or discharge around the exit site) a swab should be taken and results of previous swabs reviewed. If the infection fails to resolve IV antibiotics
may be required.

- A fever/rigor related in time to access of a central line (characteristically 15-45 minutes post flushing) should be treated as a catheter related bacteraemia unless an alternative source of infection is obvious clinically.

- Treatment requires appropriate cultures and a decision as to whether the catheter requires immediate removal, or whether a period of observation with appropriate treatment is required.

- Paired blood cultures i.e. both central and peripheral are important in considering whether a bacteraemia is catheter related. The source of the blood must be clearly labelled on each blood culture bottle.

- A diagnosis of catheter related bacteraemia is highly probable when culture samples obtained from the catheter become positive at least 2 hours earlier than those from blood cultures. Microbiology will advise.

- A laboratory confirmed catheter related bacteraemia is indicated by the identification of the same organism from blood cultures and line tip culture.

- Removal of long term lines must be discussed with senior clinician. A significant proportion of CVADs will not require removal if the patient remains clinically stable. Removal should always be considered urgently in neutropenic patients with CVAD infections.

Refer to local trust guidelines for empirical antibiotic prescribing in adults for management of CVAD infections. IV antibiotics should not be administered via the CVAD if CVAD infection suspected unless no other means of venous access.

Occlusion

- Inability to infuse through catheter or to withdraw 2ml of blood despite standard procedures.

- Causes include catheter malposition or device failure, intra-luminal clotting or precipitate, fibrin sleeve, external compression or venous thrombosis.

- PICCs and tunnelled catheters are flushed once weekly and implantable ports once monthly when not in use. All are flushed before/between/after drug administration and immediately following blood sampling.

If occlusion occurs;

Check catheter for extrinsic compression e.g. kinking, clamps and assess if
occlusion related to postural changes. Check history of recent infusions and care of catheter.

- Assess for signs of arm oedema, redness, pain and signs of SVC obstruction.
- Repeated aspiration by gentle pressure and suction action using 10mls 0.9% sodium chloride may be of benefit.
- PA chest x-ray for verification of tip position.
- If tip position satisfactory 5,000 International Units Urokinase which can be repeated if no resolution of problem.
- If effective and same problem reoccurs repeat the above twice more, provided catheter hasn’t lengthened and patient asymptomatic.
- If problems persist a linogram will be required which can demonstrate a fibrin sheath if present. Treatment with urokinase can be effective.
- If linogram is negative document and use the catheter, provided patient remains asymptomatic. Repeat linogram every 4-6 weeks.

Thrombosis

- If patient symptomatic a Doppler ultrasound or venogram should be performed to confirm thrombosis.
- For treatment of CVAD related thrombosis see VTE guidance for patients with cancer.

Mechanical phlebitis

- Inflammation of the vein caused by the presence of the catheter.
- Usually occurs 7-10 days post placement of catheter.
- Can cause localised pain, inflammation, swelling or a palpable venous cord.
- Advise gentle exercises. Apply indirect heat (heat pack wrapped in a towel) to upper arm for 20 minutes QID until phlebitis resolves.
- NSAID e.g. Ibuprofen 400mg TID or Diclofenac Sodium modified release 75mg BD for 7 days if not contraindicated.
- If no improvement in 3 days, ensure no evidence of infection or DVT.
- If symptoms persist i.e. redness, swelling beyond one week, consider catheter removal.

Adapted from McParlan, D, Infusional Services Team, Benson, G. Central Venous Access Device Guidelines - (excluding non-tunneled catheters) (BHSCT, 2015).
Diarrhoea

TREATMENT RELATED DIARRHOEA

- SACT and radiotherapy induced diarrhoea is common. It requires prompt and effective management to prevent escalating severity. It can be life threatening, particularly if the patient is neutropenic.
- Anti-cancer drugs most frequently associated are fluropyrimidines (fluorouracil, 5-FU, capecitabine), irinotecan, tyrosine-kinase inhibitors (e.g. gefitinib, sunitinib) and small molecule monoclonal antibodies (e.g. ipilimumab, cetuximab).
- Radiation induced diarrhoea is generally an acute side effect from pelvic/abdominal radiotherapy, although there is the possibility of persistent or chronic gastro-intestinal symptoms. It is more common and severe if patients are receiving concurrent chemoradiotherapy.
- Other causes of diarrhoea which need assessed for include:
 - Infective episodes including *Clostridium Difficile*
 - Medications (e.g. antibiotics, laxatives, oral electrolyte replacements, metoclopramide, proton pump inhibitors, NSAIDs)
 - Constipation with overflow
 - Sub-acute obstruction e.g. colonic tumour in situ, post-surgical adhesions
 - Malabsorption in biliary and pancreatic malignancies
 - Hypersecretion of 5HIAA in carcinoid tumours
 - Other co-morbidities e.g. hyperthyroidism, inflammatory bowel disease.

Symptoms and signs

Symptoms: Assess previous normal bowel function, onset and duration of diarrhoea, number of stools and stool composition. Important questions include presence of nocturnal diarrhoea, steatorrhoea or urgency of defecation/faecal incontinence.

Check for fever, abdominal pain, symptoms of dehydration and weakness as well as a detailed medication and dietary history (high fibre, high lactose diets can contribute). Check for problems outside the GI tract e.g. chest/urinary sepsis, recent travel, infectious contacts and other treatment related side effects e.g.
nausea/vomiting, mouth ulceration, red hands or feet.

Signs: Check for fever, dehydration, abdominal distension/tenderness, abnormal/absent bowel sounds, peri-anal/rectal or peristomal abnormalities.

Grading of Diarrhoea

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>None</td>
<td>Moderate cramping, not interfering with normal activity</td>
<td>Severe cramping and incontinence, interfering with daily activities</td>
</tr>
<tr>
<td>Frequency of Stool</td>
<td>Increase of <4 stools/day additional to number pre treatment Or mild increase in stoma output</td>
<td>Increase of 4-6 stools/day additional to number pre treatment Or moderate increase in stoma output</td>
<td>Increase of 7-9 stools/day additional to number pre treatment Or severe increase in stoma output</td>
</tr>
</tbody>
</table>

Investigations

<table>
<thead>
<tr>
<th>Bloods</th>
<th>FBP, U&E, Bone profile, LFTS, CRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stool O+S</td>
<td>Urgent stool samples should be sent ASAP but results are not needed prior to starting anti-diarrhoeals.</td>
</tr>
<tr>
<td>Abdominal x-ray</td>
<td>To exclude bowel obstruction or faecal impaction.</td>
</tr>
</tbody>
</table>

Other investigations as indicated. Examples include

- CT abdomen if signs of peritonism (guarding, rebound tenderness) to assess for small/large bowel involvement, neutropenic enterocolitis (typhlitis) or complications e.g. perforation, abscess.
- Endoscopy and biopsy after discussion with gastroenterology. Colonoscopy relatively contraindicated if suggestion of neutropenic enterocolitis due to risk of perforation.
- Additional investigations as advised by gastroenterology e.g. for pancreatic insufficiency (faecal elastase), bile acid malabsorption or small bowel bacterial overgrowth.

General Management Principles

Interrupt any systemic anti-cancer therapy including oral drugs until discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

- All patients should be informed if they develop any diarrhoea to start self-medicating with loperamide.
• If there is no improvement after 12 hours or Grade 3 or above diarrhoea urgent clinical assessment is required.
• Patients who are well hydrated, not vomiting and otherwise well can normally be managed at home.
• If there are any concerning features patients need admitted to hospital e.g. dehydrated, vomiting, increasing fatigue/weakness, neutropenia, fever, gastrointestinal bleeding, abdominal cramps not relieved by loperamide or previous admissions for diarrhoea.

Initial management

• **Fluid resuscitation** is crucial. Increase oral fluids and ensure adequate IV fluids if required. Careful assessment of fluid balance essential.
• **Electrolyte replacement** needs careful attention.
• **Stool chart** should be commenced.
• **Medication review** for any contributing drugs.
• **Dietary Advice** - Small, frequent meals as tolerated, avoiding spicy, high fibre, or high fat foods as well as raw vegetables, caffeine and carbonated drinks. Some patients with severe diarrhoea may try limiting milk and milk products temporarily to see if this improves symptoms, as the bowel may become temporarily lactose intolerant. Referral to a dietician should be considered.

Anti-diarrhoeals

Do NOT wait for stool cultures prior to commencing antidiarrhoeals.

Do NOT stop antidiarrhoeals even if sepsis suspected. The probability of infection in patients receiving chemotherapy with diarrhoea is low although *Clostridium.Difficile* should be excluded quickly. The patient’s diarrhoea needs actively treated with antidiarrhoeals alongside any suspected infection.

• **Loperamide** is first line treatment e.g. 4mg PO stat dose followed by 2mg after each loose stool or every 2 hours to a maximum 16mg daily. Loperamide is normally continued for 12 hours after resolution of diarrhoea.
• **Codeine phosphate** can be tried as an alternative or adjunct to loperamide e.g. 30-60mg, maximum 4 times daily. (Can cause dose limiting nausea and
sedation).

- **Octreotide**, a somatostatin analogue, is recommended for Grade 1-2 diarrhoea which is persisting despite loperamide or first line in Grade 3-4 diarrhoea.
 It is normally delivered via a syringe driver e.g. Starting dose of 300micrograms/24hrs, titrating up in 300mcg increments to 1500mcgs every 24 hours if required.
 It can normally be discontinued 24 hours after resolution of diarrhoea.

Summary treatment algorithms can be found at the end of this chapter.

Special Considerations

For patients with **Irinotecan** associated diarrhoea please see appendix at the end of this chapter for treatment algorithm.

Ipilimumab, Pembrolizumab and Nivolumab are examples of immunotherapies being increasingly used across a range of sites including advanced melanoma, lung and genitourinary cancers. Patients can develop severe diarrhoea secondary to an immune mediated colitis. It is essential the patient’s own oncology team is involved from the earliest opportunity – start on loperamide but high dose steroids (PO/IV) may be required.

For patients on continuous **5FU** or **Capecitabine** therapy, treatment should be interrupted for Grade II or above diarrhoea. Note that severe diarrhoea (and mucositis) early in the first cycle can be due to DPD enzyme deficiency, in which case severe neutropenia can quickly follow.

References

Benson et al. Recommended Guidelines for the Treatment of Cancer Treatment Induced Diarrhoea. JCO 2004; 22(14): 2918-2926.
Treatment algorithm for management of treatment induced diarrhoea.

Patient receiving SACT +/- radiotherapy

Evaluate

- History, risk factors, stool composition
- Assess for any complicating high risk features – Fever, vomiting, increasing fatigue/weakness, neutropenia, GI bleeding, abdominal pain
- Check medications and diet for any contributing factors

Grade 1 – 2 diarrhoea

(Up to an increase of 6 stools/day from baseline)

- Start self-medicating with 4mg loperamide stat followed by 2mg every 4 hours or after each loose stool
- Maximum dose 16mg/24hrs
- Increase fluids and dietary advice
- Patients to record the frequency and consistency of stools and monitor temperature
- Patients to report if diarrhoea worsening or any complicating features as above
- For Grade II hold any anti-cancer drugs and consider dose reduction for subsequent cycles

Diarrhoea resolved

Discontinue treatment after 12 hour diarrhoea free interval.
Continue diet modifications and gradually add solid food.

Diarrhoea unresolved

- Diarrhoea unresolved after 12 hours/eight doses of loperamide or any complicating features as detailed above

Urgent Clinical Assessment

(Including NEWs, stool sample and routine bloods)

- Low risk
 - (Well hydrated, no vomiting, fever etc)
 - Outpatient management possible
 - Add Codeine 30-60mgs qds
 - (max 240mg/24hrs)
 - Reassess patient 12-24 hrs later.

- High Risk
 - (Including dehydrated, vomiting, neutropenic, abdominal pain)
 - Admit to hospital. See next page.

NICaN Acute Oncology Clinical Guidelines
Grad 3 – 4 diarrhoea
(Increase of ≥7 stools per day from baseline)

Admit to Hospital and contact Acute oncology team or the Cancer Centre on-call oncology team
Withhold any anti-cancer therapy until resolution. Dose reduction required for subsequent cycles
Evaluate

History, risk factors, stool composition
Assess for any complicating features – Fever, vomiting, increasing fatigue/weakness, neutropenia, GI bleeding, abdominal pain/tenderness
Check medications and diet for any contributing factors.

Investigations

Bloods - FBP, U&E, Bone profile, Magnesium, LFTs, TFTs, CRP (consider lactate if haemodynamic compromise)
Stool O+S sent urgently for infection profile/C.Diff toxin
Consider abdominal x-ray (to exclude bowel obstruction/faecal impaction)
Consider CT abdomen if signs of peritonism (guarding, rebound tenderness) to assess for small/large bowel involvement, neutropenic enterocolitis (typhlitis) or complications e.g. perforation, abscess.

Initial management

Increase oral fluids and ensure adequate IV fluids with careful monitoring of fluid balance and renal function.
Commence stool chart.
Review medications and discuss dietary advice
Consider antibiotics particularly in neutropenic patients e.g. Ciprofloxacin or metronidazole for 7-14 days PO/IV if Grade 3-4 diarrhoea.
(Caution as antibiotics might worsen diarrhoea and increase risk of Clostridium difficile colitis – liaise with microbiology).
IV antibiotics if neutropenic and spiking temperatures (as per neutropenic sepsis guidelines). If protracted fever despite antibiotics consider antifungals. Review stool cultures.

Anti-diarrhoeals

Maximise Loperamide (4mg stat, 2mg every 2 hours to a max 16mg/24hours. Discontinue after 12hour diarrhoea free interval).
Consider adding in/changing Codeine Phosphate 30-60mg qds.
If diarrhoea remains unresolved 12-24hrs post initiation of loperamide commence Octreotide 300mcg/24hours SC via a syringe driver.
Can be titrated up in 300mcg increments to 1500mcgs/24 hours if required and normally discontinued 24 hours after resolution of diarrhoea.

If no improvement urgent multidisciplinary involvement and investigations required
Additional investigations as advised by gastroenterology e.g. endoscopy and biopsy (although colonoscopy relatively contraindicated if neutropenic enterocolitis suggested due to perforation risk), for pancreatic insufficiency (faecal elastase), bile acid malabsorption or small bowel bacterial overgrowth.
Additional treatment options may include
Budesonide CR (9mg PO OD for 3-5 days)
Bile Acid sequestrates e.g. cholestyramine initially 2-4g/day with food (maximum 24g/day); useful for diarrhoea/steatorrhea caused by bile acid malabsorption.
Surgery for any complications carries a high risk and should only be performed in exceptional circumstances when there is no alternative – discussion must be consultant to consultant.
Treatment algorithm for management of Irinotecan chemotherapy induced diarrhoea.

First report of diarrhoea
Assess onset, duration and risk factors

Early diarrhoea
(<24hours after Irinotecan)

Normally starts within a few hours of treatment as part of an acute cholinergic syndrome

Other associated symptoms include sweating, blurred vision, lacrimation, rhinitis, cramping or dizziness.

Treatment
These symptoms can be controlled using a dose of 0.25 mg (250 micrograms) subcutaneous atropine and prevented by atropine being given prior to future doses of irinotecan.

A further dose can be repeated if required within the 24 hour period post irinotecan.

If diarrhoea ongoing commence high dose loperamide and treat as per delayed diarrhoea pathway

Delayed Diarrhoea
(>24 hours after Irinotecan)

Treatment
Commence loperamide (4 mg stat then 2 mg 2 hourly to continue until 12 hours after the last loose stool, ignore 16mg daily maximum). Increase oral fluid intake and dietary advice. Loperamide shouldn’t be taken for more than 48 hours due to risk of paralytic ileus – patients need other measures if diarrhoea persisting e.g. octreotide.

Prophylactic broad spectrum antibiotics e.g. Ciprofloxacin (e.g. 250mg BD PO for 7 days) should be considered where diarrhoea persists longer than 24 hours.

Diarrhoea unresolved after 12-24 hours

Clinical assessment by doctor required.
Stool sample and routine bloods
Hospital admission always required if any of the following – Fever, dehydration, vomiting, GI bleeding or diarrhoea persisting beyond 48 hours after initiation of high dose loperamide chemotherapy.

Commence Octreotide 300mcg/24hours SC via syringe driver titrating up as required in 300mcg increments to 1500mcg/24 hours maximum.
Can be discontinued 24hours after resolution of diarrhoea.
Chemotherapy Extravasation

While extravasation is possible with IV injection of any chemotherapy agent it is only considered problematic with those compounds, which are vesicants, exfoliants or irritants.

Vesicants: Capable of causing pain, inflammation and blistering of local skin, underlying flesh and structures, leading to tissue death and necrosis.

Exfoliants: Capable of causing inflammation and skin shedding, but less likely to cause tissue death.

Irritants: Capable of inflammation and irritation, rarely proceeding to breakdown of tissue.

Inflammatory agents: Capable of mild to moderate inflammation and flare in local tissue.

Neutral: Do not cause inflammation or damage.

<table>
<thead>
<tr>
<th>Vesicants</th>
<th>Exfoliants</th>
<th>Irritants</th>
<th>Inflammatory Agents</th>
<th>Neutrals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsacrine</td>
<td>Aclarubicin</td>
<td>Arsenic Trioxide</td>
<td>Bortezomib</td>
<td>Aldesleukin (Interleukin 2)</td>
</tr>
<tr>
<td>Carmustine</td>
<td>Cisplatin</td>
<td>Carboplatin</td>
<td>Etoposide Phosphate</td>
<td>Alemtuzumab</td>
</tr>
<tr>
<td>Chlormethine Hydrochloride</td>
<td>Daunorubicin (liposomal)</td>
<td>Etoposide</td>
<td>Fluorouracil</td>
<td>Asparaginase</td>
</tr>
<tr>
<td>Dacarbazine</td>
<td>Docetaxel</td>
<td>Irinotecan</td>
<td>Methotrexate</td>
<td>Bevacizumab</td>
</tr>
<tr>
<td>Dactinomycin</td>
<td>Doxorubicin (liposomal)</td>
<td>Teniposide</td>
<td>Ralititrexed</td>
<td>Bleomycin</td>
</tr>
<tr>
<td>Daunorubicin</td>
<td>Floxuridine</td>
<td></td>
<td></td>
<td>Cladribine</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>Mitoxantrone</td>
<td></td>
<td></td>
<td>Crisantaspase</td>
</tr>
<tr>
<td>Epirubicin</td>
<td>Oxaliplatin</td>
<td></td>
<td></td>
<td>Cyclophosphamide</td>
</tr>
<tr>
<td>Idarubicin</td>
<td>Topotecan</td>
<td></td>
<td></td>
<td>Cytarabine</td>
</tr>
<tr>
<td>Mitomycin</td>
<td></td>
<td></td>
<td></td>
<td>Fludarabine</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td></td>
<td></td>
<td></td>
<td>Gemicitabine</td>
</tr>
<tr>
<td>Streptozocin</td>
<td></td>
<td></td>
<td></td>
<td>Ifosfamide</td>
</tr>
<tr>
<td>Treosulfan</td>
<td></td>
<td></td>
<td></td>
<td>A interferons</td>
</tr>
<tr>
<td>Vinblastine</td>
<td></td>
<td></td>
<td></td>
<td>Melphalan</td>
</tr>
<tr>
<td>Vincristine</td>
<td></td>
<td></td>
<td></td>
<td>Pentostatin</td>
</tr>
<tr>
<td>Vindesine</td>
<td></td>
<td></td>
<td></td>
<td>Rituximab</td>
</tr>
<tr>
<td>Vinorelbine</td>
<td></td>
<td></td>
<td></td>
<td>Thiotepa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trastuzumab</td>
</tr>
</tbody>
</table>

CHEMOTHERAPY EXTRAVASATION

High Risk
Low Risk
This is not an exhaustive list. There are other drugs for which the risk of extravasation injury is unknown. For investigational medicinal products used in clinical trials information may be available from the trial sponsor or clinical trials pharmacist. Out of hours contact the clinical trial investigator.

Extravasation Management – Peripheral Site

- Stop chemotherapy and any other infusions being administered via affected cannula.
- Do not remove cannula initially.
- Ensure personal protective equipment is being worn.
- Mark the area affected with a pen and ensure exact measurements of affected area are recorded in patient’s notes.
- Attach a 20ml syringe and attempt to withdrawal residual drug and if possible some blood back.
- Apply any drug specific treatment as per table below.
- Remove the cannula
- If no specific management recommended apply 1% hydrocortisone cream to affected area.
- Avoid applying pressure as this will increase the area of extravasation.
- **Follow up**: Provide analgesia if required. Ask patient to keep arm elevated for 48 hours and report any changes or deterioration (written information to be provided to patient also). If a vesicant, exfoliant or irritant drug involved should be reviewed after 24 hours and at appropriate intervals until resolution. If a vesicant injury has occurred medical team must be aware and will decide if admission required.
- **Documentation**: Document incident in patient’s medical/nursing notes; consider photographing the area for notes. Complete a Trust Incident Report form and an Extravasation Report (Green card) and send to the National Extravasation Information Service (Nexis). (www.extravasation.org.uk/Greenmenu.htm)
Extravasation Management – Central Venous Access devices

The incidence is lower but the severity may be greater due to later detection. Extravasation may occur if a patient complains of changes in sensation, pain, burning or swelling at any point along the catheter pathway or in the ipsilateral chest, or if a change in IV flow rate occurs.

Extravasation in the tunneled subcutaneous section is treated in the same way as other extravasation injuries above. A diagnosis is most readily made if 10mL of sodium chloride 0.9% is injected rapidly down the line. This usually raises a bleb at the point of damage/leakage allowing targeted treatment.

Extravasation in the deep implanted area is rare but far more serious. If suspected, the patient requires admission for analgesia, antibiotics and assessment. Local debridement may be necessary with plastics input.

Ref:

McGrady M. Management of chemotherapy extravasation – NICan guidelines (2010)
<table>
<thead>
<tr>
<th>DRUG</th>
<th>‘Spread’ & Dilute</th>
<th>Localise & Neutralise</th>
<th>Management (see Table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aclarubicin</td>
<td>No</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>Aldesleukin (Interleukin 2)</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Amsacrine</td>
<td>No</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>Arsenic Trioxide</td>
<td>Yes</td>
<td>No</td>
<td>General</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>Yes-after 1st 24hrs</td>
<td>Yes-during initial inflammatory reaction</td>
<td>C</td>
</tr>
<tr>
<td>Carmustine</td>
<td>No</td>
<td>Yes</td>
<td>D</td>
</tr>
<tr>
<td>Chloromethine Hydrochloride</td>
<td>No</td>
<td>Yes</td>
<td>E</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>Yes-for treatment administered within 24hrs</td>
<td>Yes-for treatment commenced 24hrs post extravasation</td>
<td>F (see additional comments)</td>
</tr>
<tr>
<td>Cladribine</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Crisantaspase</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Cytarabine</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Dacarbazine</td>
<td>No</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>Daunorubicin</td>
<td>No</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>Liposomal Daunorubicin</td>
<td>No</td>
<td>Yes</td>
<td>G then A (see additional comments)</td>
</tr>
<tr>
<td>Docetaxel</td>
<td>Yes</td>
<td>No</td>
<td>H</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>No</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>Liposomal Doxorubicin</td>
<td>No</td>
<td>Yes</td>
<td>G then A (see additional comments)</td>
</tr>
<tr>
<td>Epirubicin</td>
<td>No</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>Etoposide</td>
<td>Yes</td>
<td>No</td>
<td>G</td>
</tr>
<tr>
<td>Etoposide Phosphate</td>
<td>Yes</td>
<td>No</td>
<td>G</td>
</tr>
<tr>
<td>Fludarabine</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Fluorouracil</td>
<td>No</td>
<td>Yes</td>
<td>G</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Idarubicin</td>
<td>No</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>Ifosfamide</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>α-Interferon</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Irinotecan</td>
<td>Yes</td>
<td>No</td>
<td>G</td>
</tr>
<tr>
<td>Melphalan</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>No</td>
<td>Yes</td>
<td>G</td>
</tr>
<tr>
<td>Mitomycin</td>
<td>No</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>Mitoxantrone</td>
<td>No</td>
<td>Yes</td>
<td>C</td>
</tr>
<tr>
<td>Oxaliplatin</td>
<td>Yes</td>
<td>No</td>
<td>I</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>Yes</td>
<td>No</td>
<td>H (see additional comments)</td>
</tr>
<tr>
<td>Pentostatin</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Streptozocin</td>
<td>No</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>Teniposide</td>
<td>No</td>
<td>Yes</td>
<td>G</td>
</tr>
<tr>
<td>Thiotepa</td>
<td>Yes</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Topotecan</td>
<td>No</td>
<td>Yes</td>
<td>D</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>Yes</td>
<td>No</td>
<td>J</td>
</tr>
<tr>
<td>Vincristine</td>
<td>Yes</td>
<td>No</td>
<td>J</td>
</tr>
<tr>
<td>Videsine</td>
<td>Yes</td>
<td>No</td>
<td>J</td>
</tr>
<tr>
<td>Vinorelbine</td>
<td>Yes</td>
<td>No</td>
<td>J</td>
</tr>
<tr>
<td>A</td>
<td>Apply topical dimethylsulphoxide at extravasation site. Once area has dried, apply hydrocortisone 1% cream followed by 30 mins cold compression. Repeat 2 hourly for the first 24 hours after extravasation. For the next 7-10 days, apply dimethylsulphoxide 6 hourly alternating with hydrocortisone 1% cream, so treatment is being applied every 3 hours on an alternating basis. Avoid contact with good skin. If blistering occurs, stop applying dimethylsulphoxide and seek further advice.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>If a large volume has extravasated aspirate as much fluid as possible. Where a large volume is present in tissues, causing the patient pain, use the pin cushion technique to infiltrate the site with hyaluronidase (1500units in 2mL water for injection or sodium chloride 0.9%). Apply heat and compression to assist natural dispersal of the drug.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Aspirate as much fluid as possible. Give 100mg hydrocortisone injection via the cannula. Administer 100mg hydrocortisone by subcutaneous injection, in 0.2mL aliquots, around the circumference of the affected area. Apply hydrocortisone 1% cream and cover the affected area with an ice pack, on an intermittent basis, for first 24 hours.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Follow general procedure of management of cytotoxic extravasation. Treat with cold compression also.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Using the pin cushion technique infiltrate the area with 1-3mL sodium thiosulphate 2.98% followed by 100mg hydrocortisone injection to the infiltrated area. Apply cold compression intermittently for 12 hours.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Using the pin cushion technique infiltrate the affected area with 1-3mL of sodium thiosulphate 2.98%. Aspirate back, then give 1500units of hyaluronidase around the area. Apply heat and compression.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Give 100mg hydrocortisone injection via the cannula. Administer 100mg hydrocortisone by subcutaneous injection, in 0.2mL aliquots, around the circumference of the affected area. Apply hydrocortisone 1% cream and treat with pulsed cold compression for up to 24 hours.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Reconstitute 100mg hydrocortisone injection and mix with 10mg chlorphenamine injection, in a volume of 10mL. Infiltrate the extravasated area with 1-3mL of this mixture as 0.2mL pin cushion subcutaneous injections. Depending on the size of the area it may not be necessary to use the whole 3mL. Large volume extravasations may need as much as 10mL. Follow this with 1500units of hyaluronidase and warm compression. Use topical antihistamine cream for 4 days. In particularly severe cases give 1g sodium cromoglycate orally as soon as possible after injury. This can be followed by oral sodium cromoglycate 200mg QID for the next 3 days.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Infiltrate the area with hyaluronidase (1500units in 2mL water for injection) using the pin cushion technique. Gently massage the area to facilitate dispersion. Treat with warm compression. Depending on the nature and severity of the extravasation the medical team should consider the following: prescribe high dose oral steroids (dexamethasone 8mg BD for 2-3 days), prescribe oral analgesia (e.g. diclofenac SR 75mg BD) and consider a PPI. Consider referral to Plastic Surgery and/or Physiotherapy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Infiltrate the area with hyaluronidase (1500units in 2mL water for injection or sodium chloride 0.9%), in 0.2mL aliquots, over and around the circumference of the affected area. Treat affected area with warm compression for first 24 hours. For the next 7 days apply a non-steroidal anti-inflammatory cream to the affected area, QID.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisplatin</td>
<td>As an intact molecule, cisplatin causes few problems when extravasated. Problems arise when it is left untreated. Within 4 to 6 weeks of an acute event a subcutaneous deposit of platinum precipitates in the tissues causing pain, inflammation and necrosis. Injuries not treated within 24 hours should be treated with intermittent cold compression and managed symptomatically.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liposomal Daunorubicin & Liposomal Doxorubicin</td>
<td>Whilst the drug contained within the liposome is a vesicant, the formulation offers some protection. If untreated, liposomes may be degraded in the body over the next 2-3 weeks resulting in a full-blown extravasation within the next 7 to 10 days.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>Inflammation and soft tissue reactions at the injection site have been reported after infusion of paclitaxel. This can progress to serious necrotic injury if not treated promptly. Paclitaxel has a greater risk classification than docetaxel because of the cremophor in its formulation. Prolonged infusions should be avoided.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team
Hypercalcaemia of Malignancy

Hypercalcaemia of malignancy occurs in around 10% of patients. It most commonly occurs in patients with advanced disease and is an indicator of poor prognosis with median survivals of 3–4 months. Tumours most often associated with hypercalcaemia include myeloma, breast, lung (usually squamous or adenocarcinoma) with renal, thyroid, head & neck and prostate cancers accounting for the remainder.

Causes: in 80% of cases hypercalcaemia is a paraneoplastic effect of ectopic tumour production of PTHrP (parathyroid hormone related peptide). In around 20% of cases it is due to calcium release from bone metastases.

Signs and symptoms
- General – fatigue, dehydration, thirst, polyuria, anorexia, nausea, constipation
- Neurological – confusion, anxiety, seizures, coma, psychosis
- Cardiac – bradycardia, arrhythmia, prolonged PR interval, prolonged QT

Investigations

<table>
<thead>
<tr>
<th>Test</th>
<th>Definition: corrected serum Calcium > 2.6 mmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum calcium</td>
<td><3.0mmol/L – mild, may be asymptomatic</td>
</tr>
<tr>
<td>corrected for albumin</td>
<td>3.0-3.5mmol/L – moderate, requires treatment</td>
</tr>
<tr>
<td></td>
<td>>3.5mmol/L – severe, urgent treatment</td>
</tr>
<tr>
<td>U&E</td>
<td>Frequently deranged with clinical dehydration, hypomagnesaemia</td>
</tr>
<tr>
<td>PTH</td>
<td>Not routinely required in cases of known metastatic cancer in which hypercalcaemia is a recognised feature. PTH will be normal or low in malignant hypercalcaemia</td>
</tr>
<tr>
<td>Bone scan</td>
<td>Not routinely required unless patient has symptomatic bony pain and there is a clinical suspicion of bone metastases</td>
</tr>
<tr>
<td>ECG</td>
<td>May see changes in severe hypercalcaemia</td>
</tr>
</tbody>
</table>
Management

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

1. Medication review including over the counter drugs
 STOP thiazide diuretics, calcium and Vitamin D supplements, multivitamins, glucosamine.

2. Rehydration
 - Patients must be rehydrated for at least 24 hours initially - 0.9% saline IV - aim 3-4L/24 hours, slower replacement may be necessary if there are other co-morbidities. Strict input/output chart. Replace electrolytes – K, Mg. Daily U&E, Mg.
 - In severe renal or heart failure or if there are other contraindications to IV fluid replacement, liaise with oncology/nephrology teams regarding patient condition/ prognosis as to whether dialysis is appropriate.

3. Bisphosphonates
 - Patient must be rehydrated and GFR ≥30mls/min. Benefit vs risks of bisphosphonates should be considered in patients with renal impairment since this may be secondary to hypercalcaemia. Local guidelines recommend bisphosphonates if cCa >2.8 after adequate hydration – see flow chart
 - Duration of onset – serum calcium starts to reduce within 48 hours, may take up to 5 days for calcium to normalise. If required, dose can be repeated no earlier than 5-7 days if normal calcium levels not yet achieved.
 - Choice of bisphosphonate – IV Zoledronic acid is more potent with a faster onset and longer duration of action than pamidronate.
 - Dose - Zoledronic acid 4mg in 100mls N saline over 15 mins IV (if serum creatinine <400µm/L), alternatives – pamidronate 30-90mg IV, depending on severity of hypercalcaemia and renal function - See BNF

4. Refractory hypercalcaemia
 - Repeat bisphosphonate after 5-7 days, if initially treated with pamidronate, give Zoledronic acid
 - Check PTH to exclude non-malignant cause
- Corticosteroids – e.g. Prednisolone 40mg, mainly of use in haematological malignancies
- Calcitonin – effective in up to 30% resistant cases – seek specialist advice

References
Society for Endocrinology, Emergency Endocrine Guidelines 2013
Northern Ireland Palliative Care Regional Guidelines 2013
Problem Solving in Acute Oncology, Atlas Publishing 2014
Signs and Symptoms of Hypercalcaemia after Malignancy?

General: dehydration, weakness and fatigue
Neurological: fatigue, lethargy & confusion
Gastrointestinal: anorexia, vomiting, pain
Cardiac: shortened QT, prolonged PR, arrhythmias
Renal: polyuria, polydipsia

Hypercalcaemia = Corrected Calcium > 2.6
C.ca (mmol/L) = Calcium (mmol/L) + [0.02 x (40- measured albumin g/L)]

Assess and document:
- Symptoms
- Medication review – Vit D, Thiazides, Lithium, Calcium Antacids, Tamoxifen
 (If appropriate seek specialist advice before stopping)
- Evidence of heart failure, renal failure, volume depletion
- Review type of malignancy
- Review level, duration and rate of rise of corrected calcium

C. Ca < 2.8
1) Rehydrate with 1-3L of IVF (rate and quantity determined on individual basis)
2) Recheck C.Ca 24-48 hrs

C. Ca >= 2.8
1) Rehydrate with 1-3L of IVF if not already done
 (rate and quantity determined on individual basis)
2) Administer Zometa 4mg IVI over 15 mins in 100mls or Normal Saline

C. Ca >= 2.6 < 2.8
- Consider further rehydration and recheck C.ca
- If symptomatic consider Zometa 4mg IVI over 15 minutes in 100mls or Normal Saline

C. Ca Normal (< 2.6)
- Recheck C.ca in 2 weeks
- Monitor u&d

Refractory Hypercalcaemia
Consider:
- Repeat Zometa 4mg IVI over 15 minutes in 100mls or Normal Saline
- Check PTH
- Liaise with endocrinology re: cinacalcet
- Consider steroid treatment

- If concurrent severe heart or renal failure and limitations to IVF administration consider liaison with nephrology if patient condition/prognosis is appropriate for haemodialysis
- If renal impairment consult BNF or renal drug handbook re Zometa dose
- Caution with eGFR < 30
- If ARF and hypercalcaemia consider seeking renal advice as bisphosphonates may be key to reversing ARF
Hypomagnesaemia

Hypomagnesaemia

- Common causes in oncology patients: drugs, systemic anti-cancer treatment e.g. platinum chemotherapy, diuretic therapy, total parenteral nutrition with inadequate magnesium, gastrointestinal losses, poor nutrition or malabsorption.
- Whilst serum levels usually rise quickly with therapy, intracellular stores take longer to replete – it is advisable if normal renal function to continue magnesium repletion for at least 1-2 days after serum magnesium concentration normalizes.
- Apparent hypomagnesaemia will complicate hypoalbuminaemic states – there is no reliable calculation to correct for albumin levels but caution advised when interpreting magnesium levels in severely hypoalbuminaemic states (serum albumin <25 g/l).
- Plasma magnesium concentrations are regulated solely by renal excretion. IV doses in particular can result in hypermagnesaemia when GFR is severely impaired (eGFR<30ml/min) and close post infusion magnesium monitoring is warranted.

Signs and symptoms

Symptoms are often non-specific and unrecognised.
Muscle weakness, cramps, carpopedal spasm or seizures may accompany hypomagnesaemia with or without hypocalcaemia. Mental changes and cerebellar signs may be associated with more severe magnesium depletion.

Investigations

<table>
<thead>
<tr>
<th>Bloods</th>
<th>Renal function, magnesium and other electrolytes including potassium, phosphate, calcium, albumin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG</td>
<td>Prolonged PR interval widened QRS and prolonged QT possible with severe magnesium depletion.</td>
</tr>
</tbody>
</table>
Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

Management

Correct calcium and potassium abnormalities.

| Mild | 0.5-0.7 mmol/l | Oral magnesium is poorly absorbed and larger doses are poorly tolerated due to GI side effects. Prophylactic low dose PO therapy may be indicated in at risk subjects. A total of 20-24 mmol magnesium daily in divided doses is recommended. Oral magnesium products include-
| | | **Magnesium aspartate** 6.5 g sachets (10 mmol Mg2+ per sachet) - one sachet BD.
| | | Magnesium glycerophosphate tablets (4 mmol Mg2+ per tablet) – two tablets TID. This is an unlicensed preparation and should only be used for patients unable to tolerate magnesium aspartate sachets. Should be given with or after food to minimise risk of diarrhoea.
| | | If intolerant of PO treatment and patient is symptomatic, consider IV infusion of 2g (8 mmol) magnesium (4 ml magnesium sulphate 50% injection) in 100ml sodium chloride 0.9% over 1 hour. If eGFR 15-30 ml/min, administer over 4 hours. If eGFR<15ml/minute, administer over 6 hours.
| Moderate | 0.3-0.5 mmol/l | **IV infusion** of between 2-5g (8-20mmol) magnesium (4-10ml magnesium sulphate 50% injection), depending on serum magnesium level, in 100mls sodium chloride 0.9% over 1 hour, if renal function normal.
| | Normal renal function | Consider rechecking serum magnesium in 24 hours and repeat treatment if required or earlier if patient symptomatic.
| | 0.3-0.5 mmol/l eGFR <30ml/min | 2g (8mmol) magnesium (4ml magnesium sulphate 50% injection) in 100mls sodium chloride 0.9% over 4 hours (eGFR 15-30ml/min) or over 6 hours (eGFR <15ml/min). Recheck 4 hours after infusion to exclude accumulation of magnesium.
| Severe | <0.3 mmol/l Normal renal function | Intravenous infusion of 7g (28mmol) magnesium (14ml magnesium sulphate 50% injection) in 250ml sodium chloride 0.9% over 2 hours.
| | | Recheck serum magnesium in 24 hours and repeat treatment if required or earlier if symptomatic. Symptomatic patients e.g. tetany, arrhythmias or seizures should have continuous cardiac monitoring.
| | <0.3 mmol/l eGFR <30ml/min | 2-4 g (8-16 mmol) magnesium (4-8 ml of magnesium sulphate 50% injection) in 100ml sodium chloride 0.9% over 4 -12 hours (eGFR <30ml/min) and 6-12 hours (eGFR <15ml/min). Recheck serum magnesium 4 hours after infusion to exclude accumulation of magnesium.
• Side effect due to hypermagnesaemia are very unlikely with magnesium replacement doses in patients with normal renal function but could include flushing, thirst, nausea and vomiting, depression of reflexes, drowsiness, hypotension, bradycardia, cardiac arrhythmias, respiratory depression and coma. In very rare circumstances hypocalcaemia may occur. Patients should be observed and monitored for these if renal failure present.
• In the exceptional circumstance of severe symptomatic hypermagnesaemia (e.g. accidental overdose) seek senior clinical advice and give 10 ml calcium gluconate 10% (2.25 mmol calcium) over 10 minutes and repeat as required.

Adapted from T Trinick, Treatment of Hypomagnesaemia in adults, SEHSCT.
Hyponatremia

Normal plasma sodium is 135-145mmol/L.

Symptomatic hyponatremia is usually associated with a plasma sodium <125mmol/L. Symptoms are related to the severity and rapidity of the fall in plasma sodium.

Common causes in oncology patients include medications (diuretics, PPIs, opioids, NSAIDS, certain anti-cancer drugs, anti-depressants and anti-epileptics) and gastrointestinal losses. Other causes include renal failure, cirrhosis, congestive cardiac failure, Addison’s disease and hypothyroidism.

Syndrome of Inappropriate Anti-Diuretic Hormone secretion (SIADH) is a diagnosis of exclusion often over diagnosed in patients with cancer. It does occur more commonly in patients with small cell lung cancer and head and neck cancers.

Criteria for diagnosis of SIADH include:

- Hyponatremia
- Euvolemic
- Low plasma osmolality (<270mOsm/kg) with inappropriately high urine osmolality (>100mOsm/kg)
- Continued urinary sodium excretion >20mmol/L
- Normal renal, adrenal and thyroid function

Symptoms and signs

Symptoms: Often asymptomatic. If unwell symptoms tend to be neurological and include malaise, nausea and vomiting, weakness, ataxia, headache, confusion, seizures and coma.

Signs: An accurate assessment of volume status is important.

Hypovolemia – decreased skin turgor, tachycardia, postural hypotension, oliguria.

Hypervolemia – raised JVP, peripheral oedema, pulmonary oedema, ascites.
Management

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

This involves correction of the underlying cause and abnormal sodium concentrations.

Significant acute hyponatremia with seizures or coma – immediately seek specialist advice from clinical biochemistry.

In **chronic hyponatraemia** correction should be gradual to avoid fluid overload and central pontine myelinolysis. Aim for a rise in sodium concentration of **5-10mmol/24 hours**.

Medications must be reviewed.

See GAIN guidelines for relevant investigations and treatment dependant on fluid status (currently under review and updated guidance expected 2016). Advice can be obtained from clinical biochemistry.

Investigations

<table>
<thead>
<tr>
<th>Bloods</th>
<th>U&E, plasma osmolality. LFTs, glucose, thyroid function. Cortisol +/- short synacthen test if adrenal failure suspected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine</td>
<td>Urinary sodium and urine osmolality.</td>
</tr>
<tr>
<td>Chest x-ray</td>
<td>?pulmonary pathology causing SIADH if no other clear cause</td>
</tr>
</tbody>
</table>
HYponatraemIA IN ADULTS (ON OR AFTER 16TH BIRTHDAY) –
A DISORDER OF WATER BALANCE WHICH IS POTENTIALLY FATAL

STEP 1: EVALUATE
2. Is patient on drugs which might lead to hyponatraemia, e.g. diuretics, antidepressants (especially SSRI), anti-epileptics (especially carbamazepine).
3. Review fluid balance, especially in post operative patients.

Check Serum Osmolality

Low (<275 mOsmol/Kg)

STEP 2: ASSESS VOLUME STATUS
Check BP and pulse for postural changes; JVP, oedema

Hypovolaemic

At all stages ask for senior help if uncertain

Extravascular causes Urine [Na⁺] <13 mmol/L
- O-vomiting
- O-diabetes
- Fluid shifts

Renal causes
- Diuretics
- Salt wasting renal disease
- Nephropathy (nephrotic, polycystic, diabetes, pylonephritis)
- Adrenal insufficiency

Isovolaemic

Check
- Urine [Na⁺] >15 mmol/L
- H₂O intakation (e.g. urine osmolality <100mOsmol/kg)
- SIADH (e.g. urine osmolality >100mOsmol/kg)
- Drugs
- Renal failure
- Hypothyroidism

Hyponatraemic

Check
- Urine failure
- Congestive cardiac failure
- Renal failure
- Nephrotic syndrome

TREATMENT

Symptomatic
- Restore volume with fluid challenge (1 litre 0.9% saline) over 24hrs. Repeat [Na⁺] in 1hr and continue fluids if [Na⁺] rising.
- Asymptomatic
- Restore volume with 0.9% saline.

TREATMENT

Symptomatic
- Administration of hypertonic saline
- Furosemide diuresis

Asymptomatic
- Water restriction

Symptomatic/Asymptomatic
- Treat underlying disorder
- Water and sodium restriction.

[Na⁺] should not increase by > 12mmol/L in 24 hours
Subsequent management options

In patients with SIADH where fluid restriction ineffective consider:

- Demeclocycline (600mg -1200mg daily) in order to create a drug induced nephrogenic diabetes insipidus. It may take up to 2 weeks to be effective.
- Tolvaptan – an orally active ADH antagonist is sometimes considered – discuss with endocrinology team.

Reference

Adapted from Gain Guidelines Hyponatremia in adults (on or after 16th Birthday 2010) (Currently under review)

Lymphangitis Carcinomatosis

LYMPHANGITIS CARCINOMATOSIS

- The lungs are a common site for metastatic disease. This is commonly nodular but occasionally can present as lymphangitis carcinomatosis.
- Most often associated with adenocarcinomas – breast, stomach and lung.
- Refers to diffuse infiltration of lymphatic channels by tumour, resulting in obstruction and interstitial oedema.
- Symptoms often appear disproportionate to physical signs or x-ray findings.

Symptoms and signs

Symptoms: Can include dyspnoea, dry cough, fever, night sweats and chest pain.

Signs: Can include increased respiratory rate, fine crepitations on chest auscultation.

Investigations

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest x-ray</td>
<td>May be normal. Changes can include reticular/reticulonodular shadowing, septal lines and peribronchial cuffing.</td>
</tr>
<tr>
<td>High resolution CT chest</td>
<td>Changes can include interlobular septal thickening, thickening of the fissures and peribronchovascular thickening. May be unilateral/bilateral, focal/diffuse. Mediastinal lymphadenopathy and pleural effusions may be associated.</td>
</tr>
</tbody>
</table>

Further tests e.g. blood tests and ECG may be helpful when considering other differentials including infection and pulmonary oedema.

Management

Refer to local Acute Oncology Service

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

1. Symptomatic treatment of dyspnoea and cough.
2. Steroids may offer relief e.g. Dexamethasone 8mg PO BD (am and lunchtime) with PPI cover
Trial for 1 week. If helpful then titrate down to lowest effective dose.
If no symptomatic improvement stop.
3. Consider IV or oral loop diuretics if appropriate.
4. Systemic treatment e.g. chemotherapy or hormone therapy may be helpful if
disease remains responsive to treatment.
5. Refer to specialist palliative care team if symptomatic.

Prognosis

Prognosis is poor and often limited to weeks or short months. It is however
dependent on the underlying disease and response to treatment. Patients should be
considered for specialist palliative care input.
Malignant Bowel Obstruction

MALIGNANT BOWEL OBSTRUCTION

Bowel obstruction can occur in patients with metastatic cancer from almost any diagnosis but occurs most commonly in patients with metastatic gynaecological, bowel or stomach cancer. This guideline is **not applicable** to patients presenting for the **first time with bowel (colon) cancer** even in the presence of metastatic disease. Those patients should be immediately discussed with the surgical team regarding surgery. Patients may be still potentially curable even if both colon and subsequent liver resection is required.

Obstruction can be

- **Malignancy related** (small or large bowel) – average life expectancy is normally less than 3 months but this can be significantly improved if systemic treatment is appropriately administered following resolution of the acute episode.
- **Non-malignancy related** – e.g. secondary to adhesions or post-operative complications.

Symptoms and signs

Symptoms: Abdominal pain, colic, nausea, heartburn/reflux symptoms, vomiting, constipation.

Signs: Hydration status, abdomen – ascites, palpable masses, bowel sounds, succession splash, PR examination.

Investigations

<table>
<thead>
<tr>
<th>Bloods</th>
<th>Renal function and electrolytes (hypercalcaemia, hypokalemia, hypomagnesaemia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal x-ray</td>
<td>Can assess bowel lumen diameter and presence of air below the diaphragm to rule out perforation.</td>
</tr>
<tr>
<td>+/- erect chest x-ray</td>
<td>Further investigations if appropriate e.g. CT abdomen/pelvis or small bowel series may assist diagnosis of remediable causes.</td>
</tr>
</tbody>
</table>

Management

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team
Management depends on a number of factors including the prognosis of the underlying cancer, performance status and severity of the obstruction (complete/partial, single point/multiple points of obstruction).

Initial management considerations should include:

- **Diet** - The patient should normally be fasted for the first 24 hours. After this, sips of fluid may be introduced as tolerated for the next 48 hours, with light diet thereafter.
- **IV fluids** – with correction of any electrolyte imbalances.
- **Monitor volume of vomitus.**
- **Mouthcare.**
- **Consider Nasogastric tube for symptomatic relief.**
- **Surgery** is only indicated in a small select number of patients and referral should be made consultant-to-consultant. Initial referral to the surgical team by junior medical staff should only be made if there are signs of peritonism.

Symptom management - Suggestions for managing pain, nausea and vomiting can be found below. Seek advice from specialist palliative care (SPCT) early.

Pain

Background Pain

- Opiates via CSCI. Doses initially as per existing medication. Refer to opiate equivalence tables if required.

Colic

- Hyocine Butylbromide 30mg/24hrs via CSCI. Can be increased in 30mg increments to 120mg. (Higher doses may be used by SPCT).

If pain not responding to above regimes or neuropathic pain suspected, discuss with palliative care.
Second line management options:

- Regardless of presence/absence of colic Levomepromazine 5mg/24hrs via CSCI, with 5mg doses SC on a prn basis. The CSCI dose can be titrated upwards in 5mg increments to 25mg as tolerated.

- If vomiting not settling after 72 hours despite the above, consider trial of high dose dexamethasone (e.g. 8mg IV OD (am) x5 days with IV PPI cover) provided no contraindications.
 If no benefit - stop. If beneficial consider down titrating over next 2 weeks. Review dose in setting of extreme hunger/hyperglycaemia/agitation.

- Persisting nausea consider Ondansetron 8mg/24hrs via CSCI. Can be uptitrated in 8mg doses to maximum of 32mg/24hrs.

- Persisting vomiting consider Octreotide 300micrograms/24hrs via CSCI. Can be uptitrated in 300mcg doses to 1200mcg.

- If control of vomiting remains difficult consider NG tube or venting gastrostomy after discussion with consultant.

Heartburn

Consider IV PPI e.g. omeprazole 40mg OD.

Constipation
PR examination should be performed as part of initial assessment. If faeces in rectum, 2 glycerine suppositories should be inserted against side wall of rectum. All laxatives should be stopped first 48 hours. After this consider adding Docusate 100mg BD for patients with partial obstruction, which may be subsequently increased to 200mg BD.

Subsequent management

- Aim of chronic management is **symptom control**.
- Level of intervention dictated by multiple factors, chiefly performance status and patient preference.
- Will include a combination of pharmacological management, diet as tolerated, parenteral fluids where appropriate, mouthcare and venting gastrostomy or colonic stenting in selected cases.
- **Nutrition**: In the vast majority of cases, patients will have rapidly progressive disease, other organ dysfunction and poor performance status; hence nutritional considerations are not relevant. In highly selected cases where life expectancy is estimated to be longer and patient is otherwise ‘well’, a discussion led by the consultant regarding TPN may be appropriate.

Reference

Adapted from Northern Ireland Cancer Centre Clinical Recommendations for the Management of Malignant Bowel Obstruction in Advanced Ovarian Cancer
Malignant Pericardial Effusion

Malignant pericardial effusions occur in up to 20% of patients with advanced cancer, however do not usually require treatment unless there are increasing symptoms and/or haemodynamic compromise. Pericardial effusions are most likely to be seen in breast, lung oesophageal cancer and also lymphoma. Most effusions are due to direct infiltration of the pericardium, however rarely thoracic radiotherapy and some chemotherapy agents can also cause pericarditis and a pericardial effusion.

Signs and Symptoms

- Patients with mild-moderate effusions may be asymptomatic.
- Fatigue, dyspnoea, chest pain
- Signs of cardiac compromise requiring urgent treatment include: Raised JVP, muffled heart sounds, tachycardia, hypotension.

Investigations

<table>
<thead>
<tr>
<th>Test</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest X-ray</td>
<td>Cardiomegaly</td>
</tr>
<tr>
<td>ECG</td>
<td>Low voltage QRS complexes in all leads, rarely electrical alternans</td>
</tr>
<tr>
<td>Transthoracic ECHO</td>
<td>Establishes presence and volume of pericardial effusion, degree of cardiac dysfunction, detect structural heart disease or pericardial pathology</td>
</tr>
</tbody>
</table>

Management

Refer immediately to local cardiology and acute oncology teams

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

Management will depend upon symptoms, anticipated prognosis, and responsiveness of underlying cancer to systemic anti-cancer therapy
- Asymptomatic / minimally symptomatic – conservative management with echocardiogram monitoring, treatment of the underlying disease

- Symptomatic – patients with haemodynamic compromise require urgent pericardiocentesis by local cardiology teams

- Recurrent pericardial effusions – seen in up to 60% of cases, discuss with cardiology/cardiothoracic teams - consider prolonged catheter drainage or surgical pericardiotomy (window).

References

UKONS Acute Oncology Clinical Management Guidelines 2013
Malignant Pleural Effusion

Malignant pleural effusion is associated with a poor prognosis with median survivals of 3-12 months. Cancers most often associated with pleural effusions include breast and lung cancer (50-65%), ovarian and upper GI cancers.

Signs and Symptoms

Shortness of breath, chest pain, fatigue, cough.

Investigations

The pathway for patients will differ depending on whether this is a new presentation with cancer or whether there is an established cancer diagnosis. Investigations to consider include:

<table>
<thead>
<tr>
<th>History & examination</th>
<th>Typically fluid accumulations of >500mls detected clinically</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest X-Ray</td>
<td>Typically fluid accumulations of >300mls detected, assess for other causes of symptoms</td>
</tr>
<tr>
<td>CT chest/abdomen</td>
<td>In newly diagnosed patients, or those with a long disease-free interval for staging – discuss with AOS</td>
</tr>
<tr>
<td>Cytology</td>
<td>Required to establish diagnosis in patients with no previous cancer diagnosis / long disease-free interval</td>
</tr>
<tr>
<td>Chest ultrasound scan</td>
<td>For assessment and localisation prior to intervention</td>
</tr>
</tbody>
</table>

Management

Refer to local Respiratory and Acute Oncology Service

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

Assess

- Symptoms
- Performance status
- First or subsequent presentation
- Prognosis
- Histology / responsiveness of tumour to systemic anti-cancer treatment / prior treatments / disease burden
- **NB** Withhold any anticoagulants and antiplatelet agents prior to intervention if it is clinically appropriate to do so
Flowchart for management of malignant pleural effusions

Known malignant pleural effusion

Symptomatic

YES

NO

Refer to local respiratory and oncology teams

Prognosis > 1 month

YES

NO

Aspirate for symptom control, limit to 1.5 L

Consider referral to thoracic surgery for thoracoscopic drainage. Indwelling catheter may be considered (e.g. pleurX)

Good performance status, limited systemic disease, good prognosis

YES

NO

Refer urgently to Acute Oncology

Systemic therapy likely to lead to rapid response e.g. small cell lung cancer

YES

NO

Drain using small bore intercostal drain +/- medical pleurodesis as per local policies or consider indwelling pleural catheter

FOR recurrent effusions consider:

Long term indwelling catheter e.g. pleurX
Thoracoscopy may be indicated in selected patients: discuss with thoracic surgery

References
British Thoracic Society Pleural disease Guideline 2010
UKONS Acute Oncology Management Guidelines 2013
Metastatic Spinal Cord Compression

Due to metastatic spread or direct extension of malignancy causing compression of the spinal cord or cauda equina by direct pressure and/or vertebral instability or collapse, and so threatening or causing neurological disability.

Can occur in almost all malignancies, but myeloma, lung, prostate and breast cancers are the most common types.

Patients with a history of bone metastases in the vertebral column are at higher potential risk and should be educated to urgently report suggestive symptoms. Patients who have an existing cancer diagnosis can also develop MSCC if there is cancer progression. In approximately 20% of patients the patient has MSCC as the initial cancer presentation.

Urgent assessment, imaging and management is essential to ensure the best neurological and functional outcomes.

Signs and Symptoms

- New, progressive or severe pain in the spine (including nocturnal pain disturbing sleep), which may be aggravated by straining
- Radicular pain (pain "radiating" along the dermatome of a nerve due to inflammation or irritation of the nerve root at its connection to the spinal column)
- Any limb weakness or difficulty in walking
- Sensory loss or bladder or bowel dysfunction
- Localised spinal tenderness
- Neurological signs of spinal cord or cauda equina compression.
Investigations

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urgent MRI of whole spine (if contraindicated, spinal CT may be considered)</td>
<td>This should be done within 24 hours in the case of spinal pain suggestive of spinal metastases and neurological symptoms or signs suggestive of MSCC. MRI may occasionally be needed more urgently if there is a pressing clinical need for emergency surgery e.g. significant and rapid neurological deterioration.</td>
</tr>
<tr>
<td>CT chest, abdomen (+/- pelvis)</td>
<td>Consider after discussion with specialist teams if patient has a new cancer diagnosis or if re-staging required in an existing cancer patient.</td>
</tr>
</tbody>
</table>

Other investigations may also be required if a new cancer diagnosis.

Routine bloods including calcium and coagulation/group and hold if surgical option or biopsy being considered.

Management

Refer urgently to acute oncology team, Cancer Centre oncology on-call registrar or Fractures Team Royal Victoria Hospital.

Aim is to start definitive treatment, if appropriate, before any further neurological deterioration and ideally within 24 hours of the confirmed diagnosis of MSCC.

- If suspected MSCC, commence patient immediately on high dose steroids (Dexamethasone with a loading dose of 16mg or 8mg BD PO/IV (unless contraindicated)) with PPI, before diagnosis is confirmed.
- Organise urgent MRI of whole spine. Investigation must not be delayed.
- Discuss results once available urgently with acute oncology/Cancer Centre oncology registrar/fractures team RVH.

For patients with a known history of cancer contact the on-call oncology registrar 02890329241 in the Cancer Centre.

For patients with no known history of cancer, for a surgical opinion phone Fracture Clinic RVH 028 90632925 / 028 90633133 and ask for front of house SHO.

Complete the MSCC e-referral form with as much information as possible and email to the team you are discussing the case with. The form should be available on your Trust intranet.
A definitive treatment plan must be established ASAP and will take into consideration the cancer diagnosis, characteristics of the MSCC, functional level of the patient (neurological and performance status), overall disease status and likely prognosis. The diagnosis and proposed treatment plan should be discussed with the patient and their family.

Management Options

1. **Spinal surgery** may be more effective than radiotherapy at maintaining mobility in a subset of patients. Surgery is particularly indicated for fit patients with a short history of neurological symptoms, when there is no previous histological diagnosis of malignancy (e.g. new cancer presentation with MSCC), vertebral instability or displacement with bone impingement on spinal cord, if there is worsening of symptoms during or soon after previous spinal radiotherapy, and if patient has a reasonable prognosis (e.g. >3 months). Radiotherapy can be given post-operatively (usually a number of weeks later once wound well healed) and cases should be discussed on an individual basis.

2. If patient is not suitable for surgery, urgent **radiotherapy** to the spine is the usual treatment and is organized by the oncology on-call team at the Cancer Centre. Options may include 1 or 5 fractions of radiotherapy. If a bed is not available in the cancer centre arrangements should be made for daily transfer from the local hospital with the patient accompanied by a member of nursing staff.

3. Patients of poor performance status or completely paraplegic or tetraplegic for more than 24 hours, should be discussed urgently before any imaging or hospital transfer.

Best supportive care may be appropriate for patients unable to tolerate treatment or who have established paralysis in the absence of pain. They should be promptly referred to the specialist palliative care team.

4. **Chemotherapy** rarely indicated for treatment of MSCC but may be considered in very chemosensitive tumours e.g. germ cell tumours, lymphoma, myeloma.
Identifying Spinal instability

Spinal instability is thought to account for pain in approximately 10% of patients with vertebral metastases and is characterised clinically by severe pain at the site of the lesion on attempted movement. Instability may be present if the patient has any of the following are present:

1. Severe pain at site of lesion, increasing on movement.
2. Worsening neurology (increasing pins and needles and/or weakness)
3. Involved vertebral bodies have collapsed to less than 50% of their original height.
4. The odontoid process has been destroyed, leading to possible atlanto-axial subluxation. Patients may complain of severe pain when turning over in bed or attempting to get up especially when there is spinal instability at lower spinal levels. Such a patient may be unwilling to move the affected part and exhibits tenderness to palpation or percussion over the area. Patients with odontoid fractures or atlanto-occipital dislocations may hold their neck stiffly and sometimes in a slightly awkward position. They may refuse to move it actively or allow themselves to be moved passively. Occasionally numbness is felt in the tongue where there is compression of afferent nerves which lead to the second cervical root. The subluxed vertebral column may compress the cord causing quadriaparesis and respiratory distress.

Clinical features of pain and neurology are the best indicators of instability

Moving and Handling

Moving and handling recommendations need to be made for each patient with MSCC. Alongside radiological findings consider the following moving and handling options and then select one option for the patient's care team. For patients at end of life, be aware of the implications of recommendations on quality of life. Discuss with oncology/surgical team to decide the most appropriate option.

Recommendations for patients include -

Bed rest & log roll If patient has increasing pain and worsening neurology on movement consider recommending bed rest and log roll. Review recommendations daily.
Monitored graduated sit-up and mobilise as pain and neurology allows If patient has manageable pain, stable neurology and walking prior to diagnosis consider recommending graduated sit up and progress to mobilise as pain and neurology allows. Bracing may also be appropriate - liaise with physiotherapists.

Mobilise as pain and neurology allows If patient has minimal pain, neurology and is independently mobile consider recommending mobilise as pain and neurology allows.

Subsequent Management

Consideration should also be made for the following management steps

- Adequate analgesia
- Rehabilitation – prompt referral to physiotherapy (within 24 hours) and occupational therapy.
- Venous thromboembolism prophylaxis
- Bowel management
- Catheterisation if bladder function affected
- Ensure a plan for weaning steroids is in place

Recurrent MSCC – treatment options may include surgery, re-irradiation, supportive care and symptom relief.

Prognosis

The strongest predictor of post treatment neurological function and survival is pre-treatment neurological function.

Reference

Identifying Spinal Instability

Spinal instability is thought to account for pain in approximately 10% of patients with vertebral metastases and is characterised clinically by severe pain at the site of the lesion on attempted movement. Instability may be present if the patient has any of the following are present:

1. Severe pain at site of lesion, increasing on movement.
2. Worsening neurology (increasing pins and needles and/or weakness)
3. Involved vertebral bodies have collapsed to less than 50% of their original height.
4. The odontoid process has been destroyed, leading to possible atlanto-axial subluxation.

Patients may complain of severe pain when turning over in bed or attempting to get up especially when there is spinal instability at lower spinal levels. Such a patient may be unwilling to move the affected part and exhibits tenderness to palpation or percussion over the area.

Patients with odontoid fractures or atlanto-occipital dislocations may hold their neck stiffly and sometimes in a slightly awkward position. They may refuse to move it actively or allow themselves to be moved passively. Occasionally numbness is felt in the tongue where there is compression of afferent nerves which lead to the second cervical root. The subluxed vertebral column may compress the cord causing quadriplegia and respiratory distress.

“Clinical features of pain and neurology are the best indicators of instability”

Moving and Handling

Moving and handling recommendations need to be made for each patient with MStC. Alongside radiological findings consider the following moving and handling options and then select one option for the patient’s care team. For patients at end of life, be aware of the implications of recommendations on quality of life.

Recommendation for patients (tick only one)

- **Bed rest & log roll**
 - If patient has increasing pain and worsening neurology on movement consider recommending bed rest and log roll. Review recommendations daily.

- **Monitored graduated sit-up and mobilise as pain and neurology allows**
 - If patient has manageable pain, stable neurology and walking prior to diagnosis consider recommending graduated sit up and progress to mobilise as pain and neurology allows. Bracing may also be appropriate - liaise with physiotherapists.

- **Mobilise as pain and neurology allows**
 - If patient has minimal pain, neurology and is independently mobile consider recommending mobilise as pain and neurology allows.
Treatment Related Nausea and Vomiting

TREATMENT RELATED NAUSEA AND VOMITING

- SACT and radiotherapy induced nausea and vomiting is one of the most commonly encountered side effects of these treatments.
- It is easy to assume the nausea and vomiting is the result of the patient’s treatment but other common causes in cancer patients should be assessed for.
- These include other medications (e.g. opioids), constipation, infection, anxiety, metabolic abnormalities (e.g. renal failure, hypercalcaemia), peptic ulcer disease, bowel obstruction and brain metastases / raised intra-cranial pressure.

Symptoms and signs

Symptoms: A detailed history is essential. It is important to assess the timing of symptoms, oral intake, amount of vomit, and presence of any haematemesis or coffee-ground vomit. Also check for bowel movements, reflux/gastritis and abdominal pain as well as a detailed medication history.

Signs: Check for signs of dehydration, abdominal distension/tenderness, abnormal or absent bowel sounds.

Grading of Nausea and Vomiting

<table>
<thead>
<tr>
<th></th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>Loss of appetite without alteration in eating habits</td>
<td>Oral intake decreased without significant weight loss, dehydration or malnutrition; IV fluids indicated <24 hours</td>
<td>Inadequate oral caloric intake; IV fluids, tube feedings or TPN indicated ≥24 hours</td>
<td>Life threatening consequences</td>
</tr>
<tr>
<td>Vomiting</td>
<td>1 episode in 24 hour</td>
<td>2-5 episodes in 24 hours; IV fluids indicated <24 hours</td>
<td>≥6 episodes in 24 hours; IV fluids, or TPN indicated ≥24 hours</td>
<td>Life threatening consequences</td>
</tr>
</tbody>
</table>

Investigations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloods</td>
<td>Consider FBP, U&E, Bone profile, LFTs, CRP</td>
</tr>
<tr>
<td>Abdominal x-ray</td>
<td>If concerns regarding obstruction.</td>
</tr>
<tr>
<td>Other investigations as indicated e.g. CT brain if brain metastases is a differential diagnosis.</td>
<td></td>
</tr>
</tbody>
</table>
Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

- Investigate and treat for any non – SACT/radiotherapy related causes.
- Assess need for rehydration. Ensure adequate IV fluids, especially if patient is hypotensive, tachycardic or oliguric.
- Stop any causative drugs. NB. If patient is on opioids do NOT stop these abruptly but add in anti-emetic treatment.
- Advise patient to eat small, frequent meals (if bowel obstruction excluded).
- Anti-emetics:
 - Anti-emetics with different modes of action should be combined.
 - Consider an appropriate route of administration – IV/SC routes may be required initially but these must be regularly reviewed.
 - Note that some drug combinations are inappropriate e.g. prokinetic drugs (e.g. metoclopramide) are antagonised by anticholinergic drugs (e.g. cyclizine).
 - Domperidone is recommended in younger patients as metoclopramide is associated with an increased risk of dystonic reactions in this patient group.
 - Seek specialist palliative care advice if nausea and vomiting remains difficult to control.

SACT induced nausea and vomiting

SACT induced nausea and vomiting is normally defined accordingly -

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td>N&V during the first 24hrs after SACT.</td>
</tr>
<tr>
<td>Delayed</td>
<td>>24 hours after SACT and may continue for up to 6-7 days after SACT.</td>
</tr>
<tr>
<td>Anticipatory</td>
<td>N&V prior to the beginning of a new cycle of SACT.</td>
</tr>
<tr>
<td>Breakthrough</td>
<td>N&V despite standard anti-emetics, which require extra treatment.</td>
</tr>
<tr>
<td>Refractory</td>
<td>Patients who have failed both standard and rescue medication.</td>
</tr>
</tbody>
</table>
• Patients often develop anxiety about the symptoms recurring in the future. Optimal control is required in the acute phase to prevent nausea and vomiting in the delayed phase and reduce the chances of anticipatory vomiting developing.

• Patients will receive different combinations of anti-emetics pre chemotherapy and to take at home depending on the potential for the different agents to cause nausea and vomiting.

• If possible establish what ant-emetic regimen has been prescribed by the oncology team. The patients treating cancer unit should be able to help you with this information which will be documented on the chemotherapy prescription chart.

• Check whether the patient has been taking these anti-emetics correctly and regularly – educating patients and carers is essential to optimise compliance.

The following table is helpful for guiding breakthrough antiemetic choices.

<table>
<thead>
<tr>
<th>SACT antiemetic schedule</th>
<th>Breakthrough</th>
</tr>
</thead>
<tbody>
<tr>
<td>No anti-emetics pre SACT Metoclopramide prn as take home</td>
<td>If not taking regular anti-emetics Metoclopramide 10mg orally/parenterally TID for 5 days or Domperidone 10mg PO TID for 5 days. If taking regular anti-emetics Substitute Metoclopramide/Domperidone with Levomepromazine 6mg (unlicensed) orally at night initially increasing to BD if necessary (more sedating) or Cyclizine 50mg orally/parenterally TID.</td>
</tr>
<tr>
<td>Dexamethasone pre SACT Dexamethasone as take home Metoclopramide as take home</td>
<td>Substitute Metoclopramide/Domperidone with Levomepromazine 6mg (unlicensed) orally at night initially increasing to BD if necessary (more sedating) or Cyclizine 50mg orally/parenterally TID.</td>
</tr>
<tr>
<td>Ondansetron pre SACT Dexamethasone pre SACT Dexamethasone as take home Metoclopramide as take home</td>
<td>Ondansetron 8mg orally/ parenterally twice a day Or Substitute Metoclopramide/Domperidone with Haloperidol 1-2mg orally/parenterally OD/BD Or Levomepromazine 6 mg (unlicensed) orally up to TID or 5-10 mg continuous subcutaneous infusion over 24 hours Or Cyclizine 50mg orally/ parenterally TID Or Cyclizine 150mg continuous subcutaneous infusion over 24 hours</td>
</tr>
<tr>
<td>Ondansetron pre SACT</td>
<td>Ondansetron as take home</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Dexamethasone (20mg) pre SACT</td>
<td>Dexamethasone as take home</td>
</tr>
<tr>
<td>Aprepitant pre SACT</td>
<td>Aprepitant as take home</td>
</tr>
<tr>
<td>Dexamethasone as take home</td>
<td>Metoclopramide as take home</td>
</tr>
</tbody>
</table>

| Substitute Metoclopramide/Domperidone with Haloperidol 1-2mg orally/parenterally OD/BD |
| Or Levomepromazine 6 mg (unlicensed) orally up to TID or 5-10mg continuous subcutaneous infusion over 24 hours |
| Or Cyclizine 50mg orally/ parenterally TID Or Cyclizine 150mg continuous subcutaneous infusion over 24 hours. |

The patient’s oncology team will then make changes to the patient’s anti-emetics for their next cycle of SACT. For anticipatory nausea and vomiting Lorazepam 1mg orally or sublingually 30 minutes before SACT, or even the night before/on the morning of SACT might be helpful.

Radiation induced nausea and vomiting

Is an acute radiotherapy side effect characterized by a latent asymptomatic period 1-2 hours after treatment, followed by sudden nausea and vomiting that can last for 6-8 hours. It may occur periodically or persistently during radiotherapy treatment, typically resolving within a short time of treatment ending.

Again the aim of anti-emetic therapy is to prevent nausea and vomiting with prophylactic anti-emetics prescribed by the treating oncology team.

The risk of radiation induced nausea and vomiting depends on the area being treated, doses being delivered and if concurrent chemotherapy is being given.

The following table is helpful for selecting additional ant-emetics.
<table>
<thead>
<tr>
<th>Area receiving radiotherapy</th>
<th>Antiemetic prophylaxis</th>
<th>Rescue antiemetic (one off dose)</th>
<th>Subsequent fractions (radiotherapy treatments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremities Breast</td>
<td>No routine antiemetics usually necessary, Consider: Cyclizine 50mg orally three TID when required</td>
<td>If not taking regular anti-emetics Cyclizine 50mg orally/parenterally</td>
<td>If not taking regular anti-emetics Metoclopramide 10mg orally TID</td>
</tr>
<tr>
<td>Cranium Head and neck Lower thorax region Pelvis</td>
<td>Cyclizine 50mg orally three times a day Consider: Ondansetron 8mg orally BD</td>
<td>If taking cyclizine add in ondansetron 8mg orally/parenterally If taking ondansetron add in dexamethasone 4mg orally/parenterally</td>
<td>Ondansetron 8mg orally BD Consider Dexamethasone 4mg orally in the morning</td>
</tr>
<tr>
<td>Upper abdomen Hemibody Abdominal-pelvic Mantle Craniospinal</td>
<td>Ondansetron 8mg orally BD</td>
<td>Dexamethasone 4mg orally/parenterally Consider Levomepromazine 6 mg to 12mg (unlicensed) orally up to TID</td>
<td>Ondansetron 8mg orally twice a day And Dexamethasone 4mg orally in the morning Consider: Levomepromazine 6 mg to 12mg (unlicensed) orally up to three times a day</td>
</tr>
<tr>
<td>Total body irradiation Total nodal irradiation</td>
<td>Ondansetron 8mg orally BD for at least 24 hours after completion of radiotherapy And Dexamethasone 4mg orally BD.</td>
<td>Levomepromazine 6 mg to 12mg (unlicensed) orally up to TID. 5 to 10 mg continuous subcutaneous infusion over 24 hours</td>
<td>Ondansetron 8mg orally BD And Dexamethasone 4mg orally in the morning And Levomepromazine 6 mg to 12mg (unlicensed) orally up to TID or 5 to 10 mg continuous subcutaneous infusion over 24 hours</td>
</tr>
</tbody>
</table>

PPI is standardly prescribed in radiotherapy when steroid therapy is initiated.

Reference

Adapted from the Regional Antiemetic Guidelines for Adult Patients Receiving Systemic Anti-Cancer Treatment and/or Radiotherapy.
Neutropenic Sepsis

NEUTROPENIC SEPSIS (NS)

- Systemic infection in neutropenic patients is potentially life threatening. Left unchecked it can prove rapidly fatal. Simple, timely intervention can be lifesaving.
- The most predictable cause of neutropenia is systemic anti-cancer therapy (SACT), which can result in myelosuppression and immunosuppression.
- Other causes: aplastic anaemia, haematological malignancies, hereditary conditions, radiation exposure, vitamin deficiencies and autoimmune conditions.

Neutropenia: An absolute neutrophil count (ANC) of $<1.0 \times 10^9/L$ regardless of the overall white cell count.

Severe Neutropenia: ANC of $<0.5 \times 10^9/L$.

- Neutropenic sepsis (NS) is a time dependent condition. The goal is a ‘door to needle’ time of **60 minutes** for administration of first dose intravenous antibiotics.
- Early recognition of a patient’s potential to have NS at triage is crucial. All patients within 6 weeks of SACT presenting as an emergency must be assumed to have NS until proven otherwise.

DO NOT DELAY treatment to wait for an ANC result if there are any signs of sepsis.

Symptoms and signs

Classical signs and symptoms of infection may be absent. A careful history and examination should aim to identify potential sources of infection.

If any clinical SIRS (Systemic Inflammatory Response Syndrome) criterion present assume early sepsis.
- Temp $>38^\circ C$ or $<36^\circ C$
- Pulse >90 bpm
• RR >20 breaths/minute

Please note the UKONS Triage tool indicates a temperature > 37.5°C, this is a trigger for assessment. In all cases clinical judgement should be used, some patients who do not have a temperature of >38°C but who have other clinical features of NS should be treated as having NS.

If additional new signs of organ dysfunction manage as **severe sepsis**

• Altered mental state
• Hypoxia (O$_2$ saturations <94%)
• Shock (sys BP <90mmHg)

Investigations

<table>
<thead>
<tr>
<th>Bloods</th>
<th>FBP, U&E, CRP, LFTs, venous lactate and blood cultures (peripheral and if relevant central) ASAP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinalysis, cultures/swabs from sputum/faeces/throat/skin lesions and chest x-ray if clinically appropriate.</td>
<td></td>
</tr>
</tbody>
</table>
If neutropenia is excluded an alternative management plan can be made. Care should be taken with neutropenic patients who do not meet sepsis definition criteria but have low grade pyrexia. They should have follow up and may require admission for monitoring as they could deteriorate.
Interrupt any systemic anti-cancer therapy including oral drugs until discussed with the Acute Oncology Team. Ongoing management of the neutropenic sepsis patient should be in a Cancer Unit or Centre.

<table>
<thead>
<tr>
<th>NICaN Neutropenic Sepsis Guideline (First 48 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 24 hours</td>
</tr>
<tr>
<td>Monitoring</td>
</tr>
<tr>
<td>EWSC every 30 minutes until stable; thereafter 4 hourly</td>
</tr>
<tr>
<td>Systemic anti-cancer therapy</td>
</tr>
<tr>
<td>Stop systemic anti-cancer therapy & contact the treating haematologist/oncologist within one working day for a decision on continuing treatment</td>
</tr>
<tr>
<td>Antimicrobials</td>
</tr>
</tbody>
</table>
| Clear evidence of a specific focus of infection? Consider liaising with microbiology before altering regimen
Consider addition of Teicoplanin where: Clinically evident serious soft tissue infection, indwelling catheter infection, or MRSA +ve
Ensure therapeutic monitoring & dose adjustment of antimicrobials if relevant |
| If improving consider switching to oral antibiotics after 48 hours treatment
If clinical deterioration consider liaising with microbiology and switching to second line antimicrobials as well as viral and fungal infections
Ensure therapeutic monitoring & dose adjustment of antimicrobials if relevant |
| **Fluid & Electrolyte Balance** |
| Aggressive fluid replacement in dehydration
Replace electrolytes judiciously
Early critical care management if deterioration |
| Maintenance fluids as required
Continue to monitor electrolytes daily |
| **Neutropenia** |
| GCSF should NOT be used for the treatment of uncomplicated febrile neutropenia
Consider GCSF in patients with a high risk of complications only on instruction from a haematology/oncology consultant/registrars/associate specialist or staff grade
High risk features include: profound neutropenia (<0.1x10^9/l) expected to be prolonged (>10 days)
persistent fever despite appropriate antimicrobials
evidence of invasive fungal infection
sepsis syndrome (hypotension & multi-organ dysfunction)
uncontrolled primary disease
haemodynamic compromise |

Second Line Antibiotics in Neutropenic Sepsis
Consider discussion with microbiology
If not allergic to penicillin
Meropenem 1g slow IV tds & Amikacin 150mg/kg slow IV od
4/- Teicoplanin 10mg/kg slow IV (bd for 3 doses then od) - indications above
• Do not switch initial empiric antibiotics in patients with unresponsive fever unless there is a clinical deterioration or a microbiological indication.

• Some antimicrobial doses must be adjusted in the elderly and where there is renal impairment, notably Gentamicin, Teicoplanin and Amikacin. Pre-dose levels need monitored and appropriate dose adjustments made.

• When GCSF is appropriate (see previous) make sure the patient has not already received pegfilgastrim in which case GCSF should NOT be given. Use standard (i.e. non pegylated) GCSF as a daily subcutaneous injection. Discontinue after 2 consecutive days of ANC >1x10^9/L.

Reference
Adapted from Scullin P et al. Guidelines for the management of oncology/haematology adult patients (>18 years) with neutropenic sepsis (NICaN guidelines, 2013).
Mucositis

TREATMENT RELATED ORAL MUCOSITIS

- Mucositis is a general term for erythematous, erosive, inflammatory and ulcerative lesions that can occur in the mucosal lining of the mouth, pharynx, oesophagus or entire gastrointestinal tract secondary to cytotoxic treatment or radiotherapy.
- It is a commonly encountered acute side effect of both SACT and radiotherapy treatment which can be very distressing for patients.
- Particularly at risk patients include those receiving high dose chemotherapy (e.g. for leukaemia or lymphoma) and those receiving radiotherapy +/- chemotherapy for head, neck and oral cancers.

Symptoms and signs

Symptoms: Check for pain, oral intake and swallow. Also check smoking and alcohol consumption.

Signs: Check for signs of dehydration and perform careful oral assessment. Assess lips, gums, teeth, tongue and mucus membranes. Check for presence of candida and for evidence of complicating bacterial or viral infection.

WHO Grading of Oral toxicity

<table>
<thead>
<tr>
<th>Grade</th>
<th>Clinical presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Soreness +/- erythema, no ulceration</td>
</tr>
<tr>
<td>2</td>
<td>Soreness/erythema + ulceration. Patient can eat solid foods</td>
</tr>
<tr>
<td>3</td>
<td>Soreness/erythema + ulceration. Patient can’t swallow solid diet-liquid diet only</td>
</tr>
<tr>
<td>4</td>
<td>Soreness/erythema + ulceration to the extent that oral alimentation is not possible</td>
</tr>
</tbody>
</table>

Investigations

<table>
<thead>
<tr>
<th>Bloods</th>
<th>Update FBP, U&E and CRP if concerns regarding dehydration or infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology</td>
<td>Send oral swabs if evidence of bacterial, fungal or viral infection.</td>
</tr>
</tbody>
</table>
General Management Principles

Interrupt any systemic anti-cancer therapy including oral drugs until discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team. Admission to the Cancer Centre is preferable if the patient is still on radiotherapy treatment.

- **Basic mouthcare regimen**
 - Mouthwashes - 0.9% saline mouthwash QID and at bedtime.
 - Biotene mouthwash 15mls QID can help moisten mouth.
 - Brush teeth twice daily using soft toothbrush with fluoride toothpaste.
 - Rinse toothbrush well in saline after use.
 - If dentures are worn – remove from mouth clean with toothpaste and soak in suitable solution overnight.
 - Chlorhexidine mouthwash not recommended if patient has or is recovering from cytotoxic induced mucositis as can inhibit mucosal regrowth.
 - Increase frequency of basic mouth care regimen if severe mucositis.

- **Mucosal protection**
 - Gelclair x1 sachet TID.
 - Tea tree essential oil mouthwash 2-4 drops in 10-50ml used QID (unlicensed) is also an option for mucositis.

- **Pain**
 Use liquid/soluble formulations and titrate up as required. Options include:
 - Paracetamol 1g QID (effervescent/suspension)
 - Co-codamol 8/500 or 30/500 (effervescent tablets, up to QID)
 - NSAIDS to be used in caution with chemotherapy patients
 - Oramorph 10mg/5ml liquid or Oxycodone liquid (oxynorm)
 - Aspirin mouthwash 300mg dissolvable up to QID.
 - Difflam mouthwash (Benzydamine 0.15%) – Difflam contains alcohol and can cause stinging. If used should be diluted to reduce irritation e.g. 10mls diluted in 10ml of water repeated as required.
 - If unresponsive to above measures consider syringe driver. Ensure constipation assessed for and laxatives prescribed.
 - Encourage smoking and alcohol cessation.
- **Dietician** referral if eating and drinking affected. Assess for IV fluids if severe mucositis.
- Any concerns regarding dysphagia refer to **Speech and Language Team**
- Consider referral to Respiratory Physiotherapy if patient has difficulty clearing respiratory tract secretions and/or if there is suspicion of aspiration.
- Introduce treatments for specific problems as necessary. See following table.
- An oesophageal stricture may be a late side effect (usually >90 days) after an acute radiation oesophagitis - consider OGD if symptoms are prolonged and persist despite treatment.

<table>
<thead>
<tr>
<th>Mouth Ulcers</th>
<th>Oesophagitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonjela Hydrocortisone 2.5mg mucoadhesive buccal tablets’ or ‘hydrocortisone 2.5mg oromucoal tablets’ 1 tablet placed on ulcer up to QID after meals and allowed to dissolve in close contact with the ulcer.</td>
<td>Sucralfate 1g (in 5mls) up to QID 30 minutes before meals and bedtime Oxetacaine with antacid 10mls TID 30 minutes pre meals. (Both often only available from hospital pharmacies). Proton pump inhibitor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neutropenic sepsis</th>
<th>Fungal infection (Candidiasis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If neutropenic and signs of infection treat according to neutropenic sepsis guidelines.</td>
<td>Nystatin oral suspension – 1ml to be held in mouth for at least a minute before swallowing, QID after food or Fluconazole 50mgs OD for 7 days. IV treatment if required.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viral infection</th>
<th>Dry mouth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider topical aciclovir 5% for local infection in low risk patients. Aciclovir can also be given orally or as an IV infusion for higher risk patients.</td>
<td>Frequent sips of water Sugar free chewing gum Sucking crushed ice or fresh pineapple although if patient has already developed ulceration may cause further discomfort.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dry lips</th>
<th>Coated tongue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow/white soft paraffin at night or aqueous or diprobase cream. Sugar free chewing gum Oral balance dry mouth gel applied as required.</td>
<td>Toothbrush/sponge dipped in saline Vitamin C effervescent ¼ of a 1g tablet – dissolve on tongue TID.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sputum viscosity</th>
<th>Bleeding from the mouth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fizzy drinks Saline nebulisers Carbocisteine (Mucodyne)</td>
<td>500mg tranexamic acid injection added to 5ml sterile water and used as a mouthwash 4 hourly.</td>
</tr>
</tbody>
</table>

Reference: UK Oral Mucositis and Cancer Group; Mouth Care Guidance and Support in Cancer and Palliative Care (2015)
Radiotherapy

What is Radiotherapy?

- Radical radiotherapy is second only to surgery in achieving cancer cures, and is one of the major curative options of treatment in head and neck, lung, prostate, bladder, cervix and anal cancers in particular.
- Radical radiotherapy is given alone or sometimes with concurrent chemotherapy.
- Adjuvant radiotherapy is given in some cancers after surgery e.g. breast cancer and head and neck cancer.
- The majority of radiotherapy is given with palliative intent, often to help cancer-related local symptoms or complications.
- Patients are currently only treated with radiotherapy at the Radiotherapy Department, Cancer Centre, Belfast City Hospital.
- Radiotherapy generally involves a planning phase (which often includes a planning CT scan) followed by a treatment course.
- Treatment usually uses X-rays (photons) and occasionally electrons (for superficial e.g. skin treatment), and the radiotherapy is delivered by a linear accelerator treatment machine.
- Each treatment is known as a fraction.
- The radiotherapy course is usually short for palliative treatments (e.g. 1-10 fractions) and longer (e.g. 20-30 fractions over 4-6 weeks) for radical treatments although there are a few exceptions (e.g. Stereotactic Ablative Body Radiotherapy (SABR) for Stage 1 lung cancer where the treatment is curative but the high dose is given over a small number of treatments e.g. 3-5 fractions over 1-2 weeks).
- The side effects of radiotherapy are generally related to the area which is being irradiated, with the main general side effect of treatment being fatigue.
- Side effects generally build up during the course of radiotherapy and can last
Acute side effects are defined as occurring within 90 days of the end of radiotherapy treatment and late effects are defined as occurring more than 90 days after the end of radiotherapy treatment.

If a patient develops complications of radiotherapy during the period of treatment it is important to notify the Acute Oncology Team and / or the patient’s oncology team or the Cancer Centre on-call team, and the patient may need to be admitted to the Cancer Centre at Belfast City Hospital to avoid any interruption in radiotherapy treatment.

If a patient develops complications of radiotherapy after treatment is completed, please also notify the oncology team.
Radiation Associated Neurotoxicity

RADIATION ASSOCIATED NEUROTOXICITY

- Radiation associated neurotoxicity of the brain or spinal cord can develop as an early or late side effect of radiotherapy treatment, and the most commonly seen side effect is acute cerebral oedema after cranial irradiation.
- The effect of radiation on the nervous system cell depends on both radiation and host factors. The area and volume of radiotherapy treatment, total dose, the dose per fraction, and the energy of radiation are important factors. Concurrent disease and previous treatment e.g. chemotherapy, may influence the nervous system response, and younger patients and males may be more affected.

Signs and Symptoms
Classification may be made according to the time of presentation.

<table>
<thead>
<tr>
<th>Acute reactions</th>
<th>Occurs during the course of treatment and symptoms include increased intracranial pressure or worsening of existing neurological symptoms.</th>
<th>Occurs during the course of treatment and symptoms include increased intracranial pressure or worsening of existing neurological symptoms.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Symptoms usually mild and transient and considered to be caused by radiation-induced oedema.</td>
<td>Symptoms usually mild and transient and considered to be caused by radiation-induced oedema.</td>
</tr>
<tr>
<td></td>
<td>In cranial radiotherapy acute reactions also include skin reaction (see advice on radiation skin reactions) and scalp hair loss (temporary alopecia usually occurs approximately 2-3 weeks after treatment with anticipated hair re-growth beginning 2-3 months after treatment, and generally total scalp hair loss occurs if the whole brain has been irradiated).</td>
<td>In cranial radiotherapy acute reactions also include skin reaction (see advice on radiation skin reactions) and scalp hair loss (temporary alopecia usually occurs approximately 2-3 weeks after treatment with anticipated hair re-growth beginning 2-3 months after treatment, and generally total scalp hair loss occurs if the whole brain has been irradiated).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Early delayed reactions</th>
<th>Occur several weeks to months after finishing radiation treatment.</th>
<th>Occur several weeks to months after finishing radiation treatment.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>May also present with worsening symptoms or increasing somnolence and fatigue.</td>
<td>May also present with worsening symptoms or increasing somnolence and fatigue.</td>
</tr>
<tr>
<td></td>
<td>Somnolence syndrome is typically temporary and mild and is due to transient demyelination occurring approximately 4 weeks to 4 months after treatment; effect may be noted on imaging, especially MRI; usually self-limiting condition with most patients returning to baseline status but very occasionally there is a severe reaction requiring intensive medical support.</td>
<td>Somnolence syndrome is typically temporary and mild and is due to transient demyelination occurring approximately 4 weeks to 4 months after treatment; effect may be noted on imaging, especially MRI; usually self-limiting condition with most patients returning to baseline status but very occasionally there is a severe reaction requiring intensive medical support.</td>
</tr>
<tr>
<td></td>
<td>Careful consideration is needed to avoid interpreting an early delayed reaction as a failure of treatment or progressive disease; discuss with the treating neuro-oncology team.</td>
<td>Careful consideration is needed to avoid interpreting an early delayed reaction as a failure of treatment or progressive disease; discuss with the treating neuro-oncology team.</td>
</tr>
</tbody>
</table>
Late delayed reactions

- May occur months to years after completion of radiation therapy.
- The major type of late delayed reaction is radiation necrosis, which can mimic tumour recurrence as the necrosis can be progressive, irreversible, and fatal.
- Radiation necrosis is difficult to diagnose with imaging and may require biopsy.
- Other late side radiation effects can include atrophy, haemorrhage, infarction, encephalopathy and neoplastic transformation.

Specific radiation associated neurotoxicity presentations may include:

<table>
<thead>
<tr>
<th>Cerebral oedema</th>
<th>Patients may experience an acute radiotherapy reaction during or just after cranial radiotherapy treatment with headache, nausea and rarely a seizure or additional neurological symptoms.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generally self-limiting but steroids (or an increase in the dose of steroids) may be required to reduce the radiation-induced oedema or increase in intracranial pressure.</td>
</tr>
<tr>
<td></td>
<td>Contact oncology team for advice.</td>
</tr>
<tr>
<td>Management principles:</td>
<td>Start steroids or increase dose if already prescribed. Steroids are usually only required for a temporary period and the dose is often tapered down.</td>
</tr>
<tr>
<td></td>
<td>Usual initial steroid dose is Dexamethasone 4-8mg BD PO/IV Maximum dose is usually Dexamethasone 16 mg/day. Add PPI.</td>
</tr>
<tr>
<td></td>
<td>Anti-epileptic medication may be required if seizures: specialist advice can be obtained from neurology.</td>
</tr>
<tr>
<td></td>
<td>Occasionally mannitol is used for patients not responding to dexamethasone after specialist advice.</td>
</tr>
<tr>
<td></td>
<td>If relevant, prescribe analgesia for headache and antiemetics for nausea.</td>
</tr>
</tbody>
</table>

| Spinal cord myelopathy | An early delayed transient myelopathy can occur after radiotherapy, particularly if treatment is in the cervical and thoracic spine regions. Lhermitte’s sign may be detected: a shock-like sensation which radiates down the spine on neck flexion. Most patients improve over months up to one year. |
| | Late effects are less common and more severe, and include radiotherapy myelopathy, a progressive syndrome with initial particle cord involvement and progression to a total transverse myelopathy. Investigation is generally required as differential diagnosis may include epidural spinal cord compression, intramedullary metastasis, and paraneoplastic necrotic myelopathy. |

Brachial plexopathy	An early or delayed syndrome occurring predominantly in patients who have undergone radiation therapy for Hodgkin’s lymphoma and breast cancer.
	Early brachial plexopathy may occur during or in the months after radiotherapy, may be painful at times with weakness and atrophy, and is usually reversible.
	Delayed brachial plexopathy is more common, usually occurring months to years after radiotherapy treatment; pain is usually absent but sensory loss is almost always present, with or without weakness. The condition is usually not reversible. Differential diagnosis should include exclusion of recurrent tumour.
Repeat imaging is generally not required if the presentation is consistent with radiation-induced oedema.

| Consider repeat CT brain or MRI spine | Main indication is if a different diagnosis e.g. haemorrhage is suspected |

Management

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

See above for specific interventions.
Radiation Pneumonitis

Radiation pneumonitis is inflammation of the lungs caused by radiotherapy and occurs in between 5-15% of patients who are treated with radiotherapy to the thorax. The risk is related to the volume of normal lung irradiated and the dose of radiotherapy delivered. It is most likely to occur with radical (potentially curative) treatments for lung cancer and less commonly oesophageal cancer, but can also occur occasionally after palliative thoracic radiotherapy treatment.

Symptoms usually arise within the first 90 days of radiotherapy treatment (acute side effect) but can occur later and usually within 6 months of treatment. Lung fibrosis is the resulting chronic lung injury. The risk of radiation pneumonitis is increased by the concomitant use of chemotherapy and if patient has pre-existing lung disease e.g. COPD.

Signs and Symptoms

Symptoms may be minimal or can mimic a chest infection or the symptoms of lung cancer, but should be considered suspicious for radiation pneumonitis if onset of symptoms is <90 days after completion of thoracic radiotherapy.

- Cough (may be dry/non-productive or productive)
- Shortness of breath
- Chest pain
- Chest congestion
- Fatigue
- Low-grade fever
- Pleural friction rub (possible)

Investigations

<table>
<thead>
<tr>
<th>Test</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest X-ray</td>
<td>Commonest finding is patchy opacification. Later changes can include fibrosis, volume loss and pleural thickening</td>
</tr>
<tr>
<td>CT or high resolution CT chest (or CTPA if needed to exclude pulmonary embolism)</td>
<td>May have ground glass changes, consolidation and volume loss</td>
</tr>
</tbody>
</table>
Tests (including those listed) may be needed to exclude other differential diagnoses e.g. infection, pulmonary embolism, disease recurrence and lymphangitis carcinomatosis.

Management

Discuss management with acute oncology team and patient’s consultant clinical oncologist

Treatment should be prompt if there is clinical suspicion, with introduction of oral steroids +/- antibiotics, and consideration of hospital admission if there are concerning clinical symptoms or signs. Management will depend upon severity of symptoms, and responsiveness to treatment.

Assessment of radiation pneumonitis:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asymptomatic; clinical or diagnostic observations only; intervention not indicated</td>
</tr>
<tr>
<td>2</td>
<td>Symptomatic; medical intervention indicated; limiting instrumental activities of daily living (ADL)</td>
</tr>
<tr>
<td>3</td>
<td>Severe symptoms; limiting self care ADL; oxygen indicated</td>
</tr>
<tr>
<td>4</td>
<td>Life-threatening respiratory compromise; urgent intervention indicated (e.g., tracheotomy or intubation)</td>
</tr>
<tr>
<td>5</td>
<td>Death</td>
</tr>
</tbody>
</table>

Source: Common Terminology Criteria for Adverse Events 4.0

Advice from respiratory team may be required particularly if >Grade 2 radiation pneumonitis

- If asymptomatic, no action may be required.
- If symptomatic, commence **Prednsioline** as per Lung clinical protocol with a slow tapering of dose: Prednisolone 60 mg/day x 3 weeks, 40mg/day for 2 weeks, 30mg/day x 2 weeks and 20mg/day for 2 weeks, then stop.

Consider course of **Clarithromycin** 500 mg BD. x 1 week (if no contraindication) also.

Simple linctus or **codeine linctus** may help cough.
If severe radiation pneumonitis, patient may require hospital admission, oxygen therapy, and consideration of intensive care unit support if required. IV Methylprednisolone may be indicated if no clinical response to oral steroids. Active management is required, liaising with oncology, respiratory and intensive care teams.

Ensure appropriate oncology or respiratory follow-up after initial management.
Radiation Skin Reactions

RADIATION SKIN REACTIONS

- Radiation may cause a skin reaction dependent on extrinsic factors (treatment-related) including the site and volume of radiotherapy treatment, the dose given, and number of fractions (treatments).
- Intrinsic factors (patient factors) which affect skin reactions can include age, hormonal status, infection, obesity, diabetes and rare inherited conditions such as ataxia telangiectasia. Smokers are at a higher risk of a more acute and prolonged skin reaction.
- Acute skin reactions occur more commonly in head and neck treatment where the skin generally receives a high dose over the period of treatment (and as concurrent chemotherapy is often used), in breast cancer (over the surface of the breast and sometimes more pronounced in the inframammary fold), in other regions with skin folds e.g. the groins and perineal skin folds in anal cancer radiotherapy, and also in skin cancer superficial radiotherapy (using electrons).
- The acute skin reaction typically builds and develops during radiotherapy treatment, may peak 10 days after completing treatment and subsides within approximately 4 weeks of completing treatment in most cases, though it rarely can take longer.
- Longer term side effects of a skin reaction may include hypopigmentation or hyperpigmentation, skin thickening or scarring, and rarely ulceration.
- Note that radiation recall reaction (so called “radiation recall dermatitis”, defined as the “recalling” by the skin of previous radiation exposure in response to the administration of certain response-inducing drugs) may rarely occur with the use of some chemotherapy drugs but also with other agents including statins and antibiotics. Please seek advice from the treating clinical oncology team if required.
<table>
<thead>
<tr>
<th>RTOG score</th>
<th>Description</th>
<th>Appearance of skin</th>
<th>Treatment</th>
</tr>
</thead>
</table>
| RTOG 0 | Normal | No visible change | • Diprobase cream to delay onset of reaction.
 | | | • Apply a thin layer of cream twice daily and then as required.
 | | | • Patient may continue to wash throughout treatment according to guidelines. |
| RTOG 1 | Faint or dull desquamation | Skin becomes pink or slightly red | • Frequent Diprobase cream to soothe and moisturize.
 | | | • Apply cream three times daily or as required. |
| RTOG 2A | Tender or bright erythema (dry desquamation) | Skin red, dry and scaly, some itchiness and/or tingling | • Frequent Diprobase cream.
 | | | • Apply cream four times daily.
 | | | • Diprobase ointment or white soft paraffin: liquid paraffin ointment (avoid excess build-up and do not apply directly before treatment).
 | | | • Hydrocortisone 1% cream may be used sparingly on itchy areas – apply twice daily. Patient should have written and verbal information regarding its application.
 | | | • Review hydrocortisone use after 7 days, discontinue if skin breaks.
 | | | • Refer to radiotherapy nurses for wound care. |
| RTOG 2B | Patchy moist Desquamation, Oedema | Skin inflamed with patches of epidermis broken down and moist | • Principles of moist wound healing apply.
 | | | • Apply Hydrogel dressing to moist areas, with appropriate secondary dressing – Surgipad or foam dressing (avoid excess build-up and do not apply directly before treatment).
 | | | • Diprobase cream can still be applied to other parts of field treatment area but avoid in areas that are broken down.
 | | | • Medical assessment needed. |
| RTOG 3 | Confluent moist Desquamation | Epidermis blisters and sloughs, underlying dermis is exposed and sore, oozing of serous fluid, increased risk of infection. | • Apply Hydrogel dressing to moist areas, with appropriate secondary dressing – foam dressing (avoid excess build-up and do not apply directly before treatment).
 | | | • Continual medical assessment. |

Source: Radiation Therapy Oncology Group (RTOG) Adverse Event Reporting
General advice on radiation skin reaction:

- Skin reactions may continue for several weeks post radiotherapy. Continue emollient creams until skin returns to normal. Only use products including steroid or cortisone creams advised by the radiotherapy treatment department, and steroid creams should not be used on broken skin. Use good hand hygiene when applying creams and avoid direct application of heat or cold to the area.
- When washing / bathing / showering use warm / tepid water, with unperfumed soap if desired, do **not** use perfumed products, avoid use of a washcloth, and use a soft towel to pat the area dry (avoiding friction).
- Do **not** apply perfume, aftershave or deodorant to the treatment area.
- If the face / neck is within the treatment field use an electric shaver instead of a wet razor when shaving. If the axilla is within the treatment area, shaving should be avoided.
- Do not use adhesive dressings/tape within the treatment area and until any reaction has settled.
- Do not remove any skin markings unless advised to do so.
- Avoid sun exposure to the treatment area particularly in the first year following treatment and follow general sun protection advice thereafter. Irradiated skin will always be at risk of sun damage.
- Normal skin care can generally be resumed after radiotherapy if the acute radiation skin reaction has resolved completely.

Reference

BHSCT Skin Care Policy for Patients Receiving Radiotherapy
Systemic anti-cancer therapy

There are a range of different classes of systemic anti-cancer therapies that patients are treated with. These include

- Cytotoxic chemotherapy
- Hormone therapies
- Bisphosphonates
- Biological therapies

Biological therapies include a wide range of cancer growth inhibitors.

Example include Gefitinib and Erlotinib (non-small cell lung cancer)

 Sunitinib and Everolimus (renal cancer)

 Vemurafenib and Dabrafenib (melanoma)

These oral anti-cancer treatments have a range of unique toxicities, which are managed according to standard protocols.

Patients on these oral drugs should contact their chemotherapy helpline if they are experiencing troublesome side effects. Patient management can also be discussed with the patient’s treating oncology team, acute oncology team or Cancer Centre oncology on-call team.

Biological therapies also include monoclonal antibodies e.g. Herceptin and Cetuximab and in particular immunotherapy drugs.

Immunotherapy

Immunotherapy is being increasingly utilised in a number of cancer sites including advanced melanoma, lung and genitourinary cancers.

Examples of immunotherapy include:

- Ipilimumab
- Pembrolizumab
- Nivolumab

These agents are generally well tolerated but can cause severe and potentially fatal immune mediated adverse reactions which can affect any organ system.
The most common immune mediated adverse reactions include

- Diarrhoea and Colitis
- Hepatitis
- Dermatitis
- Neuropathy
- Endocrinopathy (adrenal insufficiency, thyroid dysfunction and hyperglycaemia)
- Pneumonitis
- Nephritis

The majority of these immune mediated reactions initially occur during treatment however some may occur weeks to months after the course of immunotherapy.

Patients who have received immunotherapy are entitled to use the chemotherapy helpline for up to **12 weeks** (not the normal 6 weeks) after their last treatment.

Severe toxicities require patients to be managed with high dose steroids (prednisolone or methylprednisolone) after discussion with oncology and preferably in their treating unit.

It is essential that all patients who present with toxicity from immunotherapy have their management immediately discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team.
SACT Skin Toxicity

Many systemic anti-cancer agents can cause skin toxicities including the oral EGFR inhibitors gefitinib, erlotinib, as well as the oral drugs capecitabine, sunitinib, and IV cetuximab. Involvement of the palms of the hands and soles of the feet only is called hand-foot syndrome and most commonly seen with capecitabine, sunitinib and liposomal doxorubicin. Radiation treatment and other supportive drugs such as steroids can also cause skin rashes.

Signs and Symptoms

- **Mild** - Dry skin or localised erythema +/- rash which is asymptomatic
- **Moderate** - Scattered rash or erythema with itch or other symptoms not interfering with function
- **Severe** - Exfoliative or ulcerative dermatitis or widespread skin changes with pain or other symptoms interfering with function
- **Hand-foot syndrome** – Tingling or burning, erythema, flaking, swelling, blistering palms / soles only

Investigations

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full blood count</td>
<td>Patients may be neutropenic and/or thrombocytopenic</td>
</tr>
<tr>
<td>U&E, LFTs</td>
<td>Exclude other metabolic causes of itch or rash e.g. renal or hepatic impairment</td>
</tr>
<tr>
<td>Blood cultures, septic screen, swab areas suspicious of secondary infection</td>
<td>Appropriate if patient is showing signs/symptoms of sepsis</td>
</tr>
</tbody>
</table>

Management

Refer immediately to local acute oncology teams and consider referral to dermatology

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team
General principles of management

- Treat any evidence of dehydration or sepsis according to neutropenic sepsis / local antibiotic guidelines
- Check platelet count – rash may be secondary to thrombocytopenia
- Full medication history including over the counter medications
- Topical emollients (alcohol free) to affected areas e.g. aqueous cream, diprobase, cream E45
- Topical emollients with high urea content in hand-foot syndrome e.g. Eucerin 10% urea, or cream E45 5% urea
- Consult dermatology for advice in all cases of severe skin toxicity and in those failing to respond to first line treatment

Treatment algorithm for management of EGFR induced skin rash

<table>
<thead>
<tr>
<th>Degree</th>
<th>Description</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILD</td>
<td>usually localised, minimal symptoms, no ulceration, weeping or infection</td>
<td>topical hydrocortisone 1% and/or topical clindamycin 1%</td>
</tr>
<tr>
<td>MODERATE</td>
<td>localised or generalised, some symptoms eg pruritis, no ulceration, weeping or infection</td>
<td>topical clindamycin 1% PLUS hydrocortisone 2.5% cream</td>
</tr>
<tr>
<td>SEVERE</td>
<td>generalised, severe symptoms, impact upon ADLs, ulceration, weeping or infection present</td>
<td>topical clindamycin 1% PLUS hydrocortisone cream 2.5% PLUS oxytetracycline 500mg bd</td>
</tr>
</tbody>
</table>

Reference

Expert consensus on the management of erlotinib-associated cutaneous toxicity in the U.K. The Oncologist, 2009: 14; 840-47 Thatcher N et al
SACT Hypersensitivity

SACT RELATED HYPERSENSITIVITY

- SACT related hypersensitivity can occur with any SACT but is most commonly seen with platinums, taxanes and targeted agents.
- Different patterns of reaction occur with different drugs in that most taxane reactions occur during the first treatment whereas repeated exposure to platinums result in increased risk of hypersensitivity. However, the same principles of acute management apply.
- While there is a spectrum of severity of reactions, for the purpose of management it is best to classify reactions as **mild, moderate or severe**.

General Management Principles

Interrupt any systemic anti-cancer therapy including oral drugs and discuss management with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

1) Stop the SACT infusion immediately
2) Assess the patient - pulse, BP, respiratory rate and oxygen saturations (NEWs)
3) Call Medical Officer - do not leave patient unattended

<table>
<thead>
<tr>
<th>Severity of Reaction</th>
<th>Symptoms & Signs</th>
<th>Initial Management</th>
<th>Re-challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>Can include:</td>
<td>Chlorphenamine 10mg intravenous bolus over 1 min</td>
<td>When signs and symptoms subside restart infusion at lower infusion rate</td>
</tr>
<tr>
<td></td>
<td>• Erythema/itch /maculopapular rash</td>
<td>Hydrocortisone 200mg slow intravenous bolus</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>As above and can also include:</td>
<td>100% Oxygen</td>
<td>Do not re-challenge on that day</td>
</tr>
<tr>
<td></td>
<td>• Angioedema – tongue/lip swelling</td>
<td>Chlorphenamine 10mg intravenous bolus over 1 min</td>
<td>Monitor patient for 1 hour *</td>
</tr>
<tr>
<td></td>
<td>• Throat/chest tightness/pain</td>
<td>Hydrocortisone 200mg slow intravenous bolus</td>
<td>Reassess</td>
</tr>
<tr>
<td></td>
<td>• Abdominal/back pain</td>
<td>Establish intravenous infusion of sodium chloride</td>
<td></td>
</tr>
<tr>
<td>Severe (Anaphylaxis)</td>
<td>As above and: ANY LIFE THREATENING FEATURES including:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Airway swelling/stridor/wheeze</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hypoxia/respiratory distress</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hypotension</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Collapse/unconscious</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Persisting and escalating symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9% until Medical Officer arrives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>medically & allow home if stable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warn patient of risk of relapse when drugs wear off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consider oral Chlorphenamine 4mg PRN for 24-48 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If re-challenging, do so at a reduced rate after consulting the SPC and consider pre-medication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consultant makes decision whether to re-challenge or not</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admit for observation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assisted ventilation and ICU may be necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beware of possible recurrence of symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Do not re-challenge on that day and if re-challenging, do so at a reduced rate after consulting the SPC and consider pre-medication</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In the absence of clear evidence an observation period of 1 hour has been arbitrarily chosen

Adrenaline (Epinephrine) 500micrograms (0.5ml 1:1000 by deep intra-muscular injection) should be used in first instance for life threatening hypersensitivity reactions.
• Document name of agent and nature of reaction in notes and drug chart.

• The patient’s consultant **must** be informed if there is a moderate or severe reaction, so that a decision can be made regarding re-challenging.

• If patients who have previously reacted are being re-challenged, this should be undertaken and completed between 9am and 5pm with easy access to emergency drugs. Emergency resuscitation equipment and personnel should be available during the re-challenge period.

• If the patient has had a previous hypersensitivity reaction maximal pre-medication should be administered and the rate of infusion adjusted (refer to the SPC of the particular agent). Patients should have medicines reconciled to highlight any concurrent medicines that may contribute to infusion related events or complicate the treatment of hypersensitivity.

Reference

Steroid Induced Hyperglycaemia

Glucocorticoids may result in worsening of hyperglycaemia in patients with known diabetes and new onset hyperglycaemia in patients without previous diabetes. The hyperglycaemia is mainly postprandial with a relative lack of fasting hyperglycaemia. The risk of steroid induced hyperglycaemia is increased with high dose glucocorticoids.

Management

No known diabetes or diabetes controlled on diet or agents other than insulin or sulphonylurea:

- Check capillary blood glucose (CBG) before lunch and evening meal.
- If >7mmol/L stop high sugar food and drinks.
- CBG mostly <10mmol/l: Continue twice daily monitoring for 1 week, then reduce to once daily/stop.
- CBG mostly >10mmol/l: Increase frequency of CBGs to four times daily, check HbA1C and start treatment as below.

<table>
<thead>
<tr>
<th>Range</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 – 12.9 mmol/L</td>
<td>Gliclazide 40mg BD breakfast and lunch</td>
</tr>
<tr>
<td>13 – 14.9 mmol/L</td>
<td>Gliclazide 80mg BD breakfast and lunch</td>
</tr>
<tr>
<td>15 – 19.9 mmol/L</td>
<td>Gliclazide 120mg BD breakfast and lunch</td>
</tr>
</tbody>
</table>

If CBG remains mostly >10mmol/L, titrate Gliclazide every 48 hours to a maximum dose of 160mg BD.

If CBG remains mostly >10mmol/L on maximum dose Gliclazide after 48 hours see

<table>
<thead>
<tr>
<th>Range</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>>20 mmol/L</td>
<td>Gliclazide 160mg twice daily breakfast and lunch AND Humalog mix 25 or Novomix 30 10 units at breakfast. Isophane insulin may be used as an alternative particularly for patients with poor oral intake. Consider additional insulin at lunch if pre tea and bedtime CBGS still mostly >10mmol/L and titrate.</td>
</tr>
</tbody>
</table>

Type 2 diabetes on sub-maximal dose sulphonylurea:
Check HbA1C; Check CBG 4 times daily.
CBG mostly < 10mmol/L continue routine treatment.
CBG mostly >10mmol/L, optimise sulphonylurea first (as detailed above). If required then start premixed insulin as described below.
Type 1 diabetes, type 2 diabetes on insulin or maximal dose sulphonylurea
Check HbA1C; CBG 4 times daily.
CBG mostly <10mmol/L, continue routine treatment.
CBG mostly > 10mmol/L, add or adjust insulin as below depending on usual diabetes treatment.

<table>
<thead>
<tr>
<th>Basal insulin only</th>
<th>Add 6-8 units bolus insulin with meals and adjust according to CBG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal Bolus insulin</td>
<td>Increase bolus insulin by 25-50% and adjust according to CBGs. Do not change basal insulin dose unless advised by diabetes team.</td>
</tr>
<tr>
<td>Premixed insulin</td>
<td>Increase morning dose by 25% and extra 25% morning dose pre-lunch. Evening insulin as before. For initiation of insulin start Humalog mix 25 or Novomix 30 10 units at breakfast and consider additional insulin at lunch if pre-tea and bed time CBG still >10 mmol/L. Adjust according to CBGs. Ispohane insulin may be used as an alternative, particularly for patients with poor oral intake.</td>
</tr>
</tbody>
</table>

- See BNF for cautions and contraindications.
- Refer to diabetes team as many will require home glucose monitoring, education and follow up.
- If approaching end of life, avoidance of symptomatic hyperglycaemia rather than tight glycaemic control is appropriate.
- Additional glucose lowering treatment should be reduced when steroid dose is reduced to avoid hypoglycaemia. If steroid treatment stops, revert to diabetes treatment prior to steroid use unless glucose control was poor in which case additional treatment can be reduced and closely monitored.

Discuss management with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team if any concerns

Further advice regarding end of life diabetes care including medicines management, treating hypoglycaemia and managing glucose control on steroids is available from Diabetes UK in their End of Life Diabetes Care guidance -

Reference: Adapted from Nugent, A G. Guidelines for management of steroid induced hyperglycaemia for adult patients (BHSCT, 2013)
Superior Vena Cava Obstruction

SUPERIOR VENA CAVA OBSTRUCTION (SVCO)

- SVCO is usually associated with lung cancer (80%) but can occur with other cancers including lymphoma, breast or mediastinal germ cell tumours.
- Most commonly occurs in patients with known cancer diagnosis but can be a presenting feature of a new diagnosis.

Symptoms and signs

Symptoms: Acuteness of presentation dependent upon rate of SVC obstruction compared to recruitment of venous collaterals.
Symptoms are often worse first thing in the morning and exacerbated by bending or lying down.
Can include neck, face or arm swelling, dyspnoea, cough, headache, dysphagia, visual disturbance and hoarseness.

Signs: Although the signs are characteristic they may be absent and an index of suspicion is required based on tumour type and symptoms.
Can include fixed engorgement of external and internal jugular veins, collateral veins over chest wall, facial/conjunctival or arm oedema, facial plethora or cyanosis.
Observations including oxygen saturations required.

Investigations

<table>
<thead>
<tr>
<th>Bloods</th>
<th>FBP, U&E, LFTs and coagulation (in case interventional procedure required)</th>
</tr>
</thead>
</table>
| Imaging | Chest x-ray
Urgent contrast enhanced CT chest (to include CT upper abdomen if no recent CT imaging) |
| Biospy | In the absence of a known malignancy biopsy is preferable prior to commencing steroids |
Initial Management

Refer to local Acute Oncology Service

Interrupt any systemic anti-cancer therapy including oral drugs until management discussed with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team

Most patients present with symptoms of insidious onset and there is time to establish a histological diagnosis and extent of disease if not known prior to commencing treatment.

Unrelieved SVCO is generally not life threatening except if there is cerebral dysfunction, decreased cardiac output or upper airways obstruction.

- Sit the patient up.
- Consider oxygen and analgesia.
- If dyspnoeic oramorph 2.5-5mg PO 4 hourly is usually helpful.

Steroids

- **First presentation** of suspected cancer – hold off steroids, unless the patient has respiratory compromise, as they may compromise interpretation of biopsies.
- Already confirmed cancer diagnosis – Dexamethasone 8mg BD PO/IV (am and lunchtime) with PPI cover. NB. PO steroids preferred unless highly symptomatic/unable to swallow.

Anticoagulation

- High incidence of thrombus with intravascular stents and therefore prophylactic anticoagulation or antiplatelet drugs may be considered although their exact role has yet to be confirmed.
- Full anticoagulation should be given, where appropriate if evidence of thrombus.

Subsequent Management

Treatment options include:

1. **Stent insertion**
 - Insertion of an expandable metal stent into the SVC at the point of stricture can
offer quick symptomatic relief and restoration of the normal pattern of flow.

- Treatment of choice for severe symptoms or recurrent SVCO in a previously irradiated field.
- Used less frequently in potentially curable patients where stents may migrate if there is a significant response to treatment.
- Discuss the case with interventional radiology.

2. Chemotherapy

- Urgent chemotherapy often treatment of choice for patients with chemo-sensitive disease such as small cell lung cancer, lymphomas or mediastinal germ cell tumours.

3. Radiotherapy

- May be recommended depending on underlying histology, particularly if non chemo-sensitive disease or occlusion not amendable to stent placement.
- May make subsequent histology difficult to obtain.
- Does not provide immediate symptomatic benefit, response rates vary according to underlying disease and anticipated life expectancy must be weeks to see full benefit.
- Radiotherapy schedule depends on volume of disease and performance status of patient.

Following initial medical management, consider referral to Physiotherapy and/or Occupational Therapy if patient has on-going symptoms of dyspnoea and/or impaired physical functioning.
Venous Thromboembolism

VENOUSTHROMBOEMBOLISM (VTE) GUIDANCE FOR PATIENTS WITH CANCER

VTE Prophylaxis

- VTE risk assessment should be completed on the drug kardex and thromboprophylaxis prescribed accordingly.
- Once daily enoxaparin is the anticoagulant of choice for pharmacological thromboprophylaxis.
- Prophylactic dose of enoxaparin can be used when platelet count >75 x 10^9/L.
- When platelet count <75 x 10^9/L prophylactic LMWH should be omitted or considered on a case-by-case basis only.
- In patients with severe renal failure (creatinine clearance< 30 mL/min) the dose of enoxaparin should be reduced to 20mg OD.

VTE Treatment

- LMWH (Enoxaparin 1.5mg/kg once daily) is recommended for the initial treatment, early maintenance treatment (10 days to 3 months) and long-term treatment (beyond 3 months) of VTE in cancer patients. A 25% dose reduction may be considered after the initial 8 weeks of therapy, particularly in those patients with a perceived greater bleeding risk.
- The potential benefit of new oral anticoagulant agents for the treatment of VTE in cancer patients is acknowledged. However, it is considered premature to issue recommendations or guidance on the use of these new agents in this setting in view of the absence of specific data. All current trials have compared their benefit to warfarin therapy and this is not the standard treatment first line advised.
- After 3–6 months the benefits and risks of continued anticoagulation should be assessed. This should take into account patients’ tolerability, cancer activity and other VTE risk factors. If at this point anticoagulation is to be continued then the patient can be changed to oral anticoagulants or continue on LMWH.
• A brain tumour alone is not a contraindication for anticoagulation.
• In the presence of severe renal failure (creatinine clearance < 30 mL/min) LMWH heparin doses can be commenced at 1mg/kg once daily and optimized based on anti-Xa level.

LMWH dosing for VTE in the presence of thrombocytopenia:
Platelet count should be closely monitored if further decline anticipated or platelet count nadir has not yet been reached.

<table>
<thead>
<tr>
<th>Platelet count</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>>50 x 10^9/L</td>
<td>Full therapeutic dose LMWH</td>
</tr>
<tr>
<td>25-50 x 10^9/L</td>
<td>Prophylactic dose once daily LMWH*</td>
</tr>
<tr>
<td><25 x 10^9/L</td>
<td>Omit anticoagulation or use prophylactic dose unfractionated heparin TID*</td>
</tr>
</tbody>
</table>

(Individual bleeding risk should be considered)

Central Venous Access Device (CVAD) related

• Diagnosis of CVAD related thrombosis requires radiological evidence. If a CVAD related thrombosis is suspected an ultrasound scan should be performed. If the ultrasound result is normal in the presence of clinical suspicion of a CVAD related thrombosis then further imaging with MRI or CT scan can be considered.
• For a confirmed CVAD related thrombosis the CVAD does not necessarily have to be removed if it remains functional and the venous access is still required.
• LMWH (Enoxaparin 1.5mg/kg once daily) is the anticoagulant treatment of choice. Anticoagulation should be given for a minimum of 3 months. If the CVAD is not removed then anticoagulation should continue for as long as the CVAD remains in situ and for at least 3 months.

Recurrent VTE on Treatment

• In the event of VTE recurrence whilst on warfarin it is advised to switch to therapeutic weight-adjusted dose LMWH.
• For VTE recurrence whilst on LMWH which is at less than the therapeutic weight-adjusted dose then the dose of LMWH should be increased to the therapeutic weight-adjusted level.
• For VTE recurrence whilst on therapeutic weight-adjusted dose LMWH then the dose should be increased by approximately 25%.
If the patient has symptoms from the VTE recurrence which have not improved 5-7 days after the dose increase then the peak anti-Xa level should be checked to guide any further increase in dose.

Inferior Vena cava (IVC) filters

- Should be considered in the treatment of acute VTE when anticoagulation is **absolutely** contraindicated. The presence of contraindications to anticoagulation should be regularly reassessed. Anticoagulation should be commenced and the retrievable IVC filter removed when the contraindication has resolved.
- Not recommended for primary VTE prophylaxis in cancer patients.
- Absolutely indicated in major or life-threatening haemorrhage which requires interruption of anticoagulation in the presence of acute VTE. Once bleeding resolves the retrievable IVC filter should be removed and anticoagulation recommended.

Discuss management with the Acute Oncology Team, the patient’s treating oncology team or Cancer Centre oncology on-call team if any concerns

Reference

Adapted from Benson GM, McCauley C. The investigation and management of venous thromboembolic diseases, including superficial thrombophlebitis of the lower limb. (BHSCT, 2015).
References

NICaN guidelines

McGrady M. Management of chemotherapy extravasation –2010

Scullin P et al. Guidelines for the management of oncology/haematology adult patients (>18 years) with neutropenic sepsis – 2013

Regional Guidelines

Gain Guidelines Hyponatremia in adults (on or after 16th Birthday 2010) (currently under review)

Northern Ireland Palliative care regional guidelines 2013

Guidelines for the Rehabilitation of Patients with Metastatic Spinal Cord Compression (MSCC), Assessment and Care Provision by Occupational Therapists and Physiotherapists in the Acute Sector

Trust Guidelines

McParlan, D, Infusional Services Team, Benson, G Central Venous Access Device Guidelines - (excluding non-tunneled catheters). (BHSCT, 2015)

Nugent, A G. Guidelines for management of steroid induced hyperglycaemia for adult patients (BHSCT, 2013)

Benson GM, McCauley C. The investigation and management of venous thromboembolic diseases, including superficial thrombophlebitis of the lower limb. (BHSCT, 2015)

T Trinick, Treatment of Hypomagnesaemia in adults (SEHSCT)

Northern Ireland Cancer Centre Clinical Recommendations for the Management of Malignant Bowel Obstruction in Advanced Ovarian Cancer
Other

Benson et al. Recommended Guidelines for the Treatment of Cancer Treatment Induced Diarrhoea. JCO 2004; 22(14): 2918-2926

British Thoracic Society Pleural disease Guideline 2010

National Chemotherapy Advisory Group (NCAG) Chemotherapy Services in England: Ensuring quality and safety
http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/DH_104500

National Confidential Enquiry into Patient Outcome and Death (NCEPOD) Systemic Anti-Cancer Therapy: For better, for worse? (2008)
http://www.ncepod.org.uk/2008sact.htm

Problem Solving in Acute Oncology, Atlas Publishing 2014

Society for Endocrinology, Emergency Endocrine Guidelines 2013

UKONS Acute Oncology Management Guidelines 2013

UK Oral Mucositis and Cancer Group; Mouth Care Guidance and Support in Cancer and Palliative Care 2015